
The Ring of Gyges: Investigating the Future of Criminal Smart Contracts

Ari Juels
Cornell Tech (Jacobs)

Ahmed Kosba
Univ. of Maryland

Elaine Shi
Cornell Univ.

The Ring of Gyges is a mythical magical artifact men-
tioned by the philosopher Plato in Book 2 of his Repub-
lic. It granted its owner the power to become invisible at
will. —Wikipedia, “Ring of Gyges”

“[On wearing the ring,] no man would keep his hands
off what was not his own when he could safely take what
he liked out of the market, or go into houses and lie with
anyone at his pleasure, or kill or release from prison
whom he would... ” —Plato, The Republic, Book 2
(2.360b) (trans. Benjamin Jowett)

Abstract
Thanks to their anonymity (pseudonymity) and elimina-
tion of trusted intermediaries, cryptocurrencies such as
Bitcoin have created or stimulated growth in many busi-
nesses and communities. Unfortunately, some of these
are criminal, e.g., money laundering, illicit marketplaces,
and ransomware.

Next-generation cryptocurrencies such as Ethereum
will include rich scripting languages in support of
smart contracts, programs that autonomously interme-
diate transactions. In this paper, we explore the risk of
smart contracts fueling new criminal ecosystems. Specif-
ically, we show how what we call criminal smart con-
tracts (CSCs) can facilitate leakage of confidential in-
formation, theft of cryptographic keys, and various real-
world crimes (murder, arson, terrorism).

We show that CSCs for leakage of secrets (à la Wik-
ileaks) are efficiently realizable in existing scripting lan-
guages such as that in Ethereum. We show that CSCs
for theft of cryptographic keys can be achieved using
primitives, such as Succinct Non-interactive ARguments
of Knowledge (SNARKs), that are already expressible
in these languages and for which efficient supporting
language extensions are anticipated. We show simi-
larly that authenticated data feeds, an emerging feature
of smart contract systems, can facilitate CSCs for real-
world crimes (e.g., property crimes).

Our results highlight the urgency of creating policy
and technical safeguards against CSCs in order to real-
ize the promise of smart contracts for beneficial goals.

1 Introduction

Cryptocurrencies such as Bitcoin remove the need for
trusted third parties from basic monetary transactions
and offer anonymous (more accurately, pseudonymous)
transactions between individuals. While attractive for
many applications, these features have a dark side.
Bitcoin has stimulated the growth of ransomware [6],
money laundering [40], and illicit commerce, as exem-
plified by the notorious Silk Road [32].

New cryptocurrencies such as Ethereum (as well
as systems such as Counterparty [48] and SmartCon-
tract [1]) offer even richer functionality than Bitcoin.
They support smart contracts, a generic term denot-
ing programs written in Turing-complete cryptocurrency
scripting languages. In a fully distributed system such as
Ethereum, smart contracts enable general fair exchange
(atomic swaps) without a trusted third party, and thus can
effectively guarantee payment for successfully delivered
data or services. Given the flexibility of such smart con-
tract systems, it is to be expected that they will stimulate
not just new beneficial services, but new forms of crime.

We refer to smart contracts that facilitate crimes in dis-
tributed smart contract systems as criminal smart con-
tracts (CSCs). An example of a CSC is a smart contract
for (private-)key theft. Such a CSC might pay a reward
for (confidential) delivery of an target key sk, such as a
certificate authority’s private digital signature key.

We explore the following key questions in this paper.
Could CSCs enable a wider range of significant new
crimes than earlier cryptocurrencies (Bitcoin)? How
practical will such new crimes be? And What key ad-
vantages do CSCs provide to criminals compared with
conventional online systems? Exploring these questions
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is essential to identifying threats and devising counter-
measures.

1.1 CSC challenges

Would-be criminals face two basic challenges in the con-
struction of CSCs. First, it is not immediately obvious
whether a CSC is at all feasible for a given crime, such as
key theft. This is because it is challenging to ensure that
a CSC achieves a key property in this paper that we call
commission-fair, meaning informally that its execution
guarantees both commission of a crime and commensu-
rate payment for the perpetrator of the crime or neither.
(We formally define commission-fairness for individual
CSCs in the paper.) Fair exchange is necessary to ensure
commission-fairness, but not sufficient: We show how
CSC constructions implementing fair exchange still al-
low a party to a CSC to cheat. Correct construction of
CSCs can thus be quite delicate.

Second, even if a CSC can in principle be constructed,
given the limited opcodes in existing smart contract sys-
tems (such as Ethereum), it is not immediately clear that
the CSC can be made practical. By this we mean that the
CSC can be executed without unduly burdensome com-
putational effort, which in some smart contract systems
(e.g., Ethereum) would also mean unacceptably high ex-
ecution fees levied against the CSC.

The following example illustrates these challenges.

Example 1a (Key compromise contract) Contractor C
posts a request for theft and delivery of the signing key
skV of a victim certificate authority (CA) CertoMart. C
offers a reward $reward to a perpetrator P for (confiden-
tially) delivering the CertoMart private key skV to C.

To ensure fair exchange of the key and reward in Bit-
coin, C and P would need to use a trusted third party or
communicate directly, raising the risks of being cheated
or discovered by law enforcement. They could vet one
another using a reputation system, but such systems are
often infiltrated by law enforcement authorities [57]. In
contrast, a decentralized smart contract can achieve self-
enforcing fair exchange. For key theft, this is possible
using the CSC Key-Theft in the following example:

Example 1b (Key compromise CSC) C generates a
private / public key pair (skC ,pkC) and initializes
Key-Theft with public keys pkC and pkV (the CertoMart
public key). Key-Theft awaits input from a claimed per-
petrator P of a pair (ct,π), where π is a zero-knowledge
proof that ct = encpkC [skV ] is well-formed. Key-Theft
then verifies π and upon success sends a reward of
$reward to P . The contractor C can then download and
decrypt ct to obtain the compromised key skV .

Key-Theft implements a fair exchange between C and
P , paying a reward to P if and only if P delivers a valid
key (as proven by π), eliminating the need for a trusted
third party. But it is not commission-fair, as it does not
ensure that skvict actually has value. The CertoMart can
neutralize the contract by preemptively revoking its own
certificate and then itself claiming C’s reward $reward!

As noted, a major thrust of this paper is showing how,
for CSCs such as Key-Theft, criminals will be able to
bypass such problems and still construct commission-
fair CSCs. (For key compromise, it is necessary to
enable contract cancellation should a key be revoked.)
Additionally, we show that these CSCs can be effi-
ciently realized using existing cryptocurrency tools or
features currently envisioned for cryptocurrencies (e.g.,
zk-SNARKS [20]).

1.2 This paper
We show that it is or will be possible in smart contract
systems to construct commission-fair CSCs for three
types of crime:

1. Leakage / sale of secret documents;
2. Theft of private keys; and
3. “Calling-card” crimes, a broad class of physical-

world crimes (murder, arson, etc.)

The fact that CSCs are possible in principle is not surpris-
ing. Previously, however, it was not clear how practical
or extensively applicable CSCs might be. As our con-
structions for commission-fair CSCs show, constructing
CSCs is not as straightforward as it might seem, but new
cryptographic techniques and new approaches to smart
contract design can render them feasible and even prac-
tical. Furthermore, criminals will undoubtedly devise
CSCs beyond what this paper and the community in gen-
eral are able to anticipate.

Our work therefore shows how imperative it is for
the community to consider the construction of defenses
against CSCs. Criminal activity committed under the
guise of anonymity has posed a major impediment to
adoption for Bitcoin. Yet there has been little discus-
sion of criminal contracts in public forums on cryptocur-
rency [14] and the launch of Ethereum took place in July
2015. It is only by recognizing CSCs early in their lifecy-
cle that the community can develop timely countermea-
sures to them, and see the promise of distributed smart
contract systems fully realized.

While our focus is on preventing evil, happily the tech-
niques we propose can also be used to create beneficial
contracts. We explore both techniques for structuring
CSCs and the use of cutting-edge cryptographic tools,
e.g., Succinct Non-interactive ARguments of Knowledge
(SNARKs), in CSCs. Like the design of beneficial smart
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contracts, CSC construction requires a careful combina-
tion of cryptography with commission-fair design [35].

In summary, our contributions are:
• Criminal smart contracts: We initiate the study of

CSCs as enabled by Turing-complete scripting lan-
guages in next-generation cryptocurrencies. We ex-
plore CSCs for three different types of crimes: leak-
age of secrets in Section 4 (e.g., pre-release Holly-
wood films), key compromise / theft (of, e.g., a CA
signing key) in Section 5, and “calling-card” crimes,
such as assassination, that use data sources called
“authenticated data feeds” (described below) in Sec-
tion 6. We explore the challenges involved in crafting
such criminal contracts and demonstrate (anticipate)
new techniques to resist neutralization and achieve
commission-fairness.
We emphasize that because commission-fairness
means informally that contracting parties obtain their
“expected” utility, an application-specific metric,
commission-fairness must be defined in a way specific
to a given CSC. We thus formally specify commission-
fairness for each of our CSC constructions in the rele-
vant paper appendices.

• Proof of concept: To demonstrate that even sophisti-
cated CSC are realistic, we report (in their respective
sections) on implementation of the CSCs we explore.
Our CSC for leakage of secrets is efficiently realizable
today in existing smart contract languages (e.g., that
of Ethereum). Those for key theft and “calling-card”
crimes rely respectively for efficiency and realizability
on features currently envisioned by the cryptocurrency
community.

• Countermeasures: We briefly discuss in Section 7
some possible approaches to designing smart contract
systems with countermeasures against CSCs. While
this discussion is preliminary, a key contribution of our
work is to show the need for such countermeasures and
stimulate exploration of their implementation in smart
contract systems such as Ethereum.
We also briefly discuss in Appendix B how maturing

technologies, such as hardware roots of trust (e.g., In-
tel SGX [43]) and program obfuscation can enrich the
space of possible CSCs—as they can, of course, benefi-
cial smart contracts.

2 Background and Related Work
Emerging decentralized cryptocurrencies [55, 63] rely
on a novel blockchain technology where miners reach
consensus not only about data, but also about computa-
tion. Loosely speaking, the Bitcoin blockchain (i.e., min-
ers) verify transactions and store a global ledger, which
may be modeled as a piece of public memory whose
integrity relies on correct execution of the underlying
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Figure 1: Schematic of a decentralized cryptocur-
rency system with smart contracts, as illustrated by
Delmolino et al. [35]. A smart contract’s state is stored
on the public blockchain. A smart contract program is
executed by a network of miners who reach consensus
on the outcome of the execution, and update the con-
tract’s state on the blockchain accordingly. Users can
send money or data to a contract; or receive money or
data from a contract.

distributed consensus protocol. Bitcoin supports a lim-
ited range of programmable logic to be executed by the
blockchain. Its scripting language is restrictive, how-
ever, and difficult to use, as demonstrated by previous
efforts at building smart contract-like applications atop
Bitcoin [21, 15, 7, 56, 49].

When the computation performed by the blockchain
(i.e., miners) is generalized to arbitrary Turing-complete
logic, we obtain a more powerful, general-purpose smart
contract system. The first embodiment of such a decen-
tralized smart contract system is the recently launched
Ethereum [63]. Informally, a smart contract in such a
system may be thought of as an autonomously execut-
ing piece of code whose inputs and outputs can include
money. (We give more formalism below.) Hobbyists
and companies are already building atop or forking off
Ethereum to develop various smart contract applications
such as security and derivatives trading [48], prediction
markets [5], supply chain provenance [11], and crowd
fund raising [2].

Figure 1 shows the high-level architecture of a smart
contract system instantiated over a decentralized cryp-
tocurrency such as Bitcoin or Ethereum. When the
underlying consensus protocol employed the cryptocur-
rency is secure, a majority of the miners (as measured by
computational resources) are assumed to correctly exe-
cute the contract’s programmable logic.

Gas. Realistic instantiations of decentralized smart con-
tract systems rely on gas to protect miners against denial-
of-service attacks (e.g., running an unbounded contract).
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Gas is a form of transaction fee that is, roughly speaking,
proportional to the runtime of a contract.

In this paper, although we do not explicitly express
gas in our smart contract notation, we attempt to factor
program logic away from the contract as an optimization
when possible, to keep gas and thus transactional fees
low. For example, some of the contracts we propose in-
volve program logic executed on the user side, with no
loss in security.

2.1 Smart contracts: the good and bad

Decentralized smart contracts have many beneficial uses,
including the realization of a rich variety of new finan-
cial instruments. As Bitcoin does for transactions, in a
decentralized smart contract system, the consensus sys-
tem enforces autonomous execution of contracts; no one
entity or small set of entities can interfere with the execu-
tion of a contract. As contracts are self-enforcing, they
eliminate the need for trusted intermediaries or reputa-
tion systems to reduce transactional risk. Decentralized
smart contracts offer these advantages over traditional
cryptocurrencies such as Bitcoin:

• Fair exchange between mutually distrustful parties
with rich contract rules expressible in a programmable
logic. This feature prevents parties from cheating
by aborting an exchange protocol, yet removes the
need for physical rendezvous and (potentially cheat-
ing) third-party intermediaries.

• Minimized interaction between parties, reducing op-
portunities for unwanted monitoring and tracking.

• Enriched transactions with external state by allowing
as input authenticated data feeds (attestations) pro-
vided by brokers on physical and other events outside
the smart-contract system, e.g., stock tickers, weather
reports, etc. These are in their infancy in Ethereum,
but their availability is growing.

Unfortunately, for all of their benefit, these properties
have a dark side, potentially facilitating crime because:
• Fair exchange enables transactions between mutually

distrustful criminal parties, eliminating the need for
today’s fragile reputation systems and/or potentially
cheating or law-enforcement-infiltrated third-party in-
termediaries [57, 41].

• Minimized interaction renders illegal activities harder
for law enforcement to monitor. In some cases, as
for the key-theft and calling-card CSCs we present, a
criminal can set up a contract and walk away, allowing
it to execute autonomously with no further interaction.

• Enriched transactions with external state broaden the
scope of possible CSCs to, e.g., physical crimes (ter-
rorism, arson, murder, etc.).

As decentralized smart contract systems typically in-
herit the anonymity (pseudonymity) of Bitcoin, they of-
fer similar secrecy for criminal activities. Broadly speak-
ing, therefore, there is a risk that the capabilities enabled
by decentralized smart contract systems will enable new
underground ecosystems and communities.

2.2 Digital cash and crime
Bitcoin and smart contracts do not represent the earli-
est emergence of cryptocurrency. Anonymous e-cash
was introduced in 1982 in a seminal paper by David
Chaum [30]. Naccache and von Solms noted that anony-
mous currency would render “perfect crimes” such as
kidnapping untraceable by law enforcement [61]. This
observation prompted the design of fair blind signatures
or “escrow” for e-cash [24, 62], which enables a trusted
third party to link identities and payments. Such linkage
is possible in classical e-cash schemes where a user iden-
tifies herself upon withdraw of anonymous cash, but not
pseudonymous cryptocurrencies such as Bitcoin.

Ransomware has appeared in the wild since 1989 [16].
A major cryptovirological [64] “improvement” to ran-
somware has been use of Bitcoin [47], thanks to which
CryptoLocker ransomware has purportedly netted hun-
dreds of millions of dollars in ransom [23]. Assassi-
nation markets using anonymous digital cash were first
proposed in a 1995-6 essay entitled “Assassination Poli-
tics” [17].

There has been extensive study of Bitcoin-enabled
crime, such as money laundering [54], Bitcoin theft [52],
and illegal marketplaces such as the Silk Road [32].
Meiklejohn et al. [52] note that Bitcoin is pseudony-
mous and that mixes, mechanisms designed to confer
anonymity on Bitcoins, do not operate on large volumes
of currency and in general today it is hard for criminals
to cash out anonymously in volume.

On the other hand, Ron and Shamir provide evidence
that the FBI failed to locate most of the Bitcoin holdings
of Dread Pirate Roberts (Ross Ulbricht), the operator of
the Silk Road, even after seizing his laptop [59]. Möser,
Böhome, and Breuker [54] find that they cannot success-
fully deanonymize transactions in two of three mixes un-
der study, suggesting that the “Know-Your-Customer”
principle, regulators’ main tool in combatting money
laundering, may prove difficult to enforce in cryptocur-
rencies. Increasingly practical proposals to use NIZK
proofs for anonymity in cryptocurrencies [18, 34, 53],
some planned for commercial deployment, promise to
make stronger anonymity available to criminals.

3 Notation and Threat Model

We adopt the formal blockchain model proposed by
Kosba et al. [45]. As background, we give a high-level
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description of this model in this section. We use this
model to specify cryptographic protocols in our paper;
these protocols encompass criminal smart contracts and
corresponding user-side protocols.

Protocols in the smart contract model. Our model
treats a contract as a special party that is entrusted to
enforce correctness but not privacy, as noted above. (In
reality, of course, a contract is enforced by the network.)
All messages sent to the contract and its internal state
are publicly visible. A contract interacts with users and
other contracts by exchanging messages (also referred to
as transactions). Money, expressed in the form of ac-
count balances, is recorded in the global ledger (on the
blockchain). Contracts can access and update the ledger
to implement money transfers between users, who are
represented by pseudonymous public keys.

3.1 Threat Model
We adopt the following threat model in this paper.
• Blockchain: Trusted for correctness but not privacy.

We assume that the blockchain always correctly stores
data and performs computations and is always avail-
able. The blockchain exposes all of its internal states
to the public, however, and retains no private data.

• Arbitrarily malicious contractual parties. We assume
that contractual parties are mutually distrustful, and
they act solely to maximize their own benefit. Not only
can they deviate arbitrarily from the prescribed proto-
col, they can also abort from the protocol prematurely.

• Network influence of the adversary. We assume that
messages between the blockchain and players are de-
livered within a bounded delay, i.e., not permanently
dropped. (A player can always resend a transaction
dropped by a malicious miner.) In our model, an ad-
versary immediately receives and can arbitrarily re-
order messages, however. In real-life decentralized
cryptocurrencies, the winning miner determines the or-
der of message processing. An adversary may collude
with certain miners or influence message-propagation
among nodes. As we show in Section 5, for key-theft
contracts, message-reordering enables a rushing attack
that a commission-fair CSC must prevent.
The formal model we adopt (reviewed later in this sec-

tion and described in full by Kosba et al. [45]) captures
all of the above aspects of our threat model.

3.2 Security definitions
For a CSC to be commission-fair requires two things:
• Correct definition of commission-fairness. There is no

universal formal definition of commission fairness: It
is application-specific, as it depends on the goals of

the criminal (and perpetrator). Thus, for each CSC, we
specify in the paper appendix a corresponding defini-
tion of commission-fairness by means of a UC-style
ideal functionality that achieves it. Just specifying
a correct ideal functionality is itself often challeng-
ing! We illustrate the challenge in Section 5 and Ap-
pendix D with a naive-key functionality that represents
seemingly correct but in fact flawed key-theft contract.

• Correct protocol implementation. To prove that a
CSC is commission-fair, we must show that its (real-
world) protocol emulates the corresponding ideal func-
tionality. We prove this for our described CSCs in
the standard Universally Composable (UC) simula-
tion paradigm [26] adopted in the cryptography litera-
ture, against arbitrarily malicious contractual counter-
parties as well as possible network adversaries. Our
protocols are also secure against aborting adversaries,
e.g., attempts to abort without paying the other party.
Fairness in the presence of aborts is well known in
general to be impossible in standard models of dis-
tributed computation [33]. Several recent works, show
that a blockchain that is correct, available, and aware
of the progression of time can enforce financial fair-
ness against aborting parties [21, 45, 15]. Specifically,
when a contract lapses, the blockchain can cause the
aborting party to lose a deposit to the honest parties.

3.3 Notational Conventions

We now explain some notational conventions for writing
contracts. Appendix A gives a warm-up example.
• Currency and ledger. We use ledger[P] to denote

party P’s balance in the global ledger. For clarity,
variables that begin with a $ sign denote money, but
otherwise behave like ordinary variables.
Unlike in Ethereum’s Serpent language, in our for-
mal notation, when a contract receives some $amount
from a party P , this is only message transfer, and no
currency transfer has taken place at this point. Money
transfers only take effect when the contract performs
operations on the ledger, denoted ledger.

• Pseudonymity. Parties can use pseudonyms to ob-
tain better anonymity. In particular, a party can
generate arbitrarily many public keys. In our nota-
tional system, when we refer to a party P , P de-
notes the party’s pseudonym. The formal blockchain
model [45] we adopt provides a contract wrapper man-
ages the pseudonym generation and the message sign-
ing necessary for establishing an authenticated chan-
nel to the contract. These details are abstracted away
from the main contract program.

• Timer. Time progresses in rounds. At the beginning
of each round, the contract’s Timer function will be
invoked. The variable T encodes the current time.

5



• Entry points and variable scope. A contract can
have various entry points, each of which is invoked
when receiving a corresponding message type. Thus
entry points behave like function calls invoked upon
receipt of messages.
All variables are assumed to be globally scoped, with
the following exception: When an entry point says
“Upon receiving a message from some party P ,” this
allows the registration of a new party P . In general,
contracts are open to any party who interacts with
them. When a message is received from P (without
the keyword “some”), party P denotes a fixed party –
and a well-formed contract has already defined P .
This notational system [45] is not only designed for

convenience, but is also endowed with precise, formal
meanings compatible with the Universal Composability
framework [26]. We refer the reader to [45] for formal
modeling details. While our proofs in the paper appen-
dices rely on this supporting formalism, the main body
can be understood without it.

4 CSCs for Leakage of Secrets

As a first example of the power of smart contracts, we
show how an existing type of criminal contract deployed
over Bitcoin can be made more robust and functionally
enhanced as a smart contract and can be practically im-
plemented in Ethereum.

Among the illicit practices stimulated by Bitcoin is
payment-incentivized leakage, i.e., public disclosure, of
secrets. The recently created web site Darkleaks [3] (a
kind of subsidized Wikileaks) serves as a decentralized
market for crowdfunded public leakage of a wide variety
of secrets, including, “Hollywood movies, trade secrets,
government secrets, proprietary source code, industrial
designs like medicine or defence, [etc.].”

Intuitively, we define commission-fairness in this set-
ting to mean that a contractor C receives payment iff it
leaks a secret in its entirety within a specified time limit.
(See Appendix E for a formal definition.) As we show,
Darkleaks highlights the inability of Bitcoin to support
commission-fairness. We show how a CSC can in fact
achieve commission-fairness with high probability.

4.1 Darkleaks
In the Darkleaks system, a contractor C who wishes to
sell a piece of content M partitions it into a sequence of
n segments {mi}n

i=1. At a time (block height) Topen pre-
specified by C, a randomly selected subset Ω ⊂ [n] of
k segments is publicly disclosed as a sample to entice
donors / purchasers—those who will contribute to the
purchase of M for public leakage. When C determines
that donors have collectively paid a sufficient price, C

decrypts the remaining segments for public release. The
parameter triple (n,k,Topen) is set by C (where n = 100
and k = 20 are recommended defaults).

To ensure a fair exchange of M for payment without
direct interaction between parties, Darkleaks implements
a (clever) protocol on top of the Bitcoin scripting lan-
guage. The main idea is that for a given segment mi of M
that is not revealed as a sample in Ω, donors make pay-
ment to a Bitcoin account ai with public key pki. The
segment mi is encrypted under a key κ = H(pki) (where
H = SHA-256). To spend its reward from account ai, C
is forced by the Bitcoin transaction protocol to disclose
pki; thus the act of spending the reward automatically
enables the community to decrypt mi.

We give further details in Appendix F.1.

Shortcomings and vulnerabilities. The Darkleaks pro-
tocol has three major shortcomings / vulnerabilities that
appear to stem from fundamental functional limitations
of Bitcoin’s scripting language when constructing con-
tracts without direct communication between parties.
The first two undermine commission-fairness, while the
third limits functionality.1

1. Delayed release: C can refrain from spending pur-
chasers’ / donors’ payments and releasing unopened seg-
ments of M until after M loses value. E.g., C could with-
hold segments of a film until after its release in theaters,
of an industrial design until after it is produced, etc.

2. Selective withholding: C can choose to forego pay-
ment for selected segments and not disclose them. For
example, C could leak and collect payment for all of a
leaked film but the last few minutes (which, with high
probability, will not appear in the sample Ω), signifi-
cantly diminishing the value of leaked segments.

3. Public leakage only: Darkleaks can only serve to leak
secrets publicly. It does not enable fair exchange for pri-
vate leakage, i.e., for payment in exchange for a secret
M encrypted under the public key of a purchaser P .

Additionally, Darkleaks has a basic protocol flaw:

4. Reward theft: In the Darkleaks protocol, the Bitcoin
private key ski corresponding to pki is derived from mi;
specifically ski = SHA-256(mi). Thus, the source of M
(e.g., the victimized owner of a leaked film) can derive
ski and steal rewards received by C. (Also, when C claims
a reward, a malicious node that receives the transaction
can decrypt mi, compute ski = SHA-256(mi), and po-
tentially steal the reward by flooding the network with a
competing transaction [38].)

1That these limitations are fundamental is evidenced by calls for
new, time-dependent opcodes. One example is CHECKLOCKTIMEV-
ERIFY; apart from its many legitimate applications, proponents note
that it can facilitate secret leakage as in Darkleaks [37].
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This last problem is easily remedied by generating the
set {κi}n

i=1 of segment encryption keys pseudorandomly
or randomly, which we do in our CSC designs.

Remark: In any protocol in which goods are represented
by a random sample, not just Darkleaks, C can insert a
small number of valueless segments into M. With non-
negligible probability, these will not appear in the sample
Ω, so Ω necessarily provides only a weak guarantee of
the global validity of M. The larger k and n, the smaller
the risk of such attack.

4.2 A generic public-leakage CSC

We now present a smart contract that realizes public
leakage of secrets using blackbox cryptographic prim-
itives. (We later present efficient realizations.) This
contract overcomes limitation 1. of the Darkleaks pro-
tocol (delayed release) by enforcing disclosure of M at
a pre-specified time Tend—or else immediately refund-
ing buyers’ money. It addresses limitation 2. (selective
withholding) by ensuring that M is revealed in an all-or-
nothing manner. (We later explain how to achieve private
leakage and overcome limitation 3.)

Again, we consider settings where C aims to sell M for
public release after revealing sample segments M∗.

Informal protocol description. Informally, the proto-
col involves the following steps:
• Create contract. A seller C initializes a smart con-

tract with the encryption of a randomly generated mas-
ter secret key msk. The master secret key is used
to generate (symmetric) encryption keys for the seg-
ments {mi}n

i=1. C provides a cryptographic commit-
ment c0 := Enc(pk,msk,r0) of msk to the contract. (To
meet the narrow technical requirements of our security
proofs, the commitment is an encryption with random-
ness r0 under a public key pk created during a trusted
setup step.) The master secret key msk can be used to
decrypt all leaked segments of M.

• Upload encrypted data. For each i ∈ [n], C generates
encryption key κi :=PRF(msk, i), and encrypts the i-th
segment as cti = encκi [mi]. C sends all encrypted seg-
ments {cti}i∈[n] to the contract (or, for efficiency, pro-
vides hashes of copies stored with a storage provider,
e.g., a peer-to-peer network). Interested purchasers /
donors can download the segments of M, but cannot
decrypt them yet.

• Challenge. The contract generates a random challenge
set Ω ⊂ [n], in practice based on the hash of the most
recent currency block or some well known randomness
source, e.g., the NIST randomness beacon [9].

• Response. C reveals the set {κi}i∈Ω to the contract, and
gives ZK proofs that the revealed secret keys {κi}i∈Ω

are generated correctly from the msk encrypted as c0.

• Collect donations. During a donation period, potential
purchasers / donors can use the revealed secret keys
{κi}i∈Ω to decrypt the corresponding segments. If they
like the decrypted segments, they can donate money to
the contract as contribution for the leakage.

• Accept. If enough money has been collected, C decom-
mits msk for the contract (sends the randomness for the
ciphertext along with msk). If the contract verifies the
decommitment successfully, all donated money is paid
to C. The contract thus enforces a fair exchange of msk
for money. (If the contract expires at time Tend without
release of msk, all donations are refunded.)

The contract. Our proposed CSC PublicLeaks for im-
plementing this public leakage protocol is given in Fig-
ure 2. The corresponding user side is as explained infor-
mally above (and inferable from the contract).

Contract PublicLeaks

Init: Set state := INIT, and donations := {}. Let crs :=
KeyGennizk(1λ ), pk := KeyGenenc(1λ ) denote
hardcoded public parameters generated through a
trusted setup.

Create: Upon receiving (“create”, c0, {cti}n
i=1, Tend) from

some leaker C:
Set state := CREATED.
Select a random subset Ω ⊂ [n] of size k, and
send (“challenge”, Ω) to C.

Confirm: Upon receiving (“confirm”, {(κi,πi)}i∈Ω) from C:
Assert state= CREATED.
Assert that ∀i ∈ S: πi is a valid NIZK proof (un-
der crs) for the following statement:
∃(msk,r0), s.t. (c0 = Enc(pk,msk,r0))

∧(κi = PRF(msk, i))
Set state := CONFIRMED.

Donate: Upon receiving (“donate”, $amt) from some pur-
chaser P:

Assert state= CONFIRMED.
Assert ledger[P]≥ $amt.
Set ledger[P] := ledger[P]−$amt.
donations := donations∪{($amt,P)}.

Accept: Upon receiving (“accept”, msk, r0) from C:
Assert state= CONFIRMED

Assert c0 = Enc(pk,msk,r0)
ledger[C] := ledger[C]+ sum(donations)
Send (“leak”,msk) to all parties.
Set state := ABORTED.

Timer: If state= CONFIRMED and T > Tend: ∀($amt,P)∈
donations: let ledger[P] := ledger[P]+$amt. Set
state := ABORTED.

Figure 2: A contract PublicLeaks that leaks a secret M
to the public in exchange for donations.
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4.3 Commission-fairness: Formal defini-
tion and proof

In Appendix E, we give a formal definition of
commission-fairness for public leakage (explained infor-
mally above) as an ideal functionality. We also prove
that PublicLeaks realizes this functionality assuming all
revealed segments are valid—a property enforced with
high (but not overwhelming) probability by random sam-
pling of M in PublicLeaks.

4.4 Optimizations and Ethereum imple-
mentation

The formally specified contract PublicLeaks uses generic
cryptographic primitives in a black-box manner. We now
give a practical, optimized version, relying on the ran-
dom oracle model (ROM), that eliminates trusted setup,
and also achieves better efficiency and easy integration
with Ethereum [63].

A practical optimization. During contract creation, C
chooses random κi

$←{0,1}λ for i ∈ [n], and computes

c0 := {H(κ1,1), . . . ,H(κn,n)}.

The master secret key is simply msk := {κ1, . . . ,κn},
i.e., the set of hash pre-images. As in PublicLeaks,
each segment mi will still be encrypted as cti :=
encκ [mi]. (For technical reasons—to achieve simu-
latability in the security proof—here encκ [mi] = mi ⊕
[H(κi,1,“enc”) ||H(κi,2,“enc”) . . . ,
||H(κi,z,“enc”)] for suitably large z.)
C submits c0 to the smart contract. When challenged

with the set Ω, C reveals {κi}i∈Ω to the contract, which
then verifies its correctness by hashing and comparing
with c0. To accept donations, C reveals the entire msk.

This optimized scheme is asymptotically less efficient
than our generic, black-box construction PublicLeaks—
as the master secret key scales linearly in the number of
segments n. But for typical, realistic document set sizes
in practice (e.g., n = 100, as recommended for Dark-
leaks), it is more efficient.

Ethereum-based implementation. To demonstrate the
feasibility of implementing leakage contracts using cur-
rently available technology, we implemented a version of
the contract PublicLeaks atop Ethereum [63], using the
Serpent contract language [10]. We specify the full im-
plementation in detail in Appendix F.2.

The version we implemented relies on the practical
optimizations described above. As a technical matter,
Ethereum does not appear at present to support timer-
activated functions, so we implemented Timer in such a
way that purchasers / donors make explicit withdrawals,
rather than receiving automatic refunds.

This public leakage Ethereum contract is highly effi-
cient, as it does not require expensive cryptographic op-
erations. It mainly relies on hashing (SHA3-256) for ran-
dom number generation and for verifying hash commit-
ments. The total number of storage entries (needed for
encryption keys) and hashing operations is O(n), where,
again, Darkleaks recommends n = 100. (A hash func-
tion call in practice takes a few micro-seconds, e.g., 3.92
µsecs measured on a core i7 processor.)

4.5 Extension: private leakage

As noted above, shortcoming 3. of Darkleaks is its in-
ability to support private leakage, in which C sells a se-
cret exclusively to a purchaser P . In Appendix F.3, we
show how PublicLeaks can be modified for this purpose.
The basic idea is for C not to reveal msk directly, but to
provide a ciphertext ct= encpkP [msk] on msk to the con-
tract for a purchaser P , along with a proof that ct is cor-
rectly formed. We describe a black-box variant whose
security can be proven in essentially the same way as
PublicLeaks. We also describe a practical variant that
variant combines a verifiable random function (VRF) of
Chaum and Pedersen [31] (for generation of {κi}n

i=1)
with a verifiable encryption (VE) scheme of Camensich
and Shoup [25] (to prove correctness of ct). This variant
can be deployed today using beta support for big number
arithmetic in Ethereum.

5 A Key-Compromise CSC

Example 1b in the paper introduction described a CSC
that rewards a perpetrator P for delivering to C the stolen
key skV of a victim V—in this case a certificate authority
(CA) with public key pkV . Recall that C generates a pri-
vate / public key encryption pair (skC ,pkC). The contract
accepts as a claim by P a pair (ct,π). It sends reward
$reward to P if π is a valid proof that ct = encpkC [skV ]
and skV is the private key corresponding to pkV .

Intuitively, a key-theft contract is commission-fair if
it rewards a perpetrator P for delivery of a private key
that: (1) P was responsible for stealing and (2) Is valid
for a substantial period of time. (We formally define it in
Appendix D.)

This form of contract can be used to solicit theft of
any type of private key, e.g., the signing key of a CA, the
private key for a SSL/TLS certificate, a PGP private key,
etc. (Similar contracts could solicit abuse, but not full
compromise of a private key, e.g., forged certificates.)

Figure 3 shows the contract of Example 1b in our
notation for smart contracts. We let crs here de-
note a common reference string for a NIZK scheme
and match(pkV ,skV) denote an algorithm that verifies
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Contract KeyTheft-Naive
Init: Set state := INIT. Let crs := KeyGennizk(1λ ) denote

a hard-coded NIZK common reference string gener-
ated during a trusted setup process.

Create: Upon receiving (“create”, $reward, pkV , Tend) from
some contractor C := (pkC , . . .):

Assert state= INIT.
Assert ledger[C]≥ $reward.
ledger[C] := ledger[C]−$reward.
Set state := CREATED.

Claim: Upon receiving (“claim”, ct, π) from some purported
perpetrator P:

Assert state= CREATED.
Assert that π is a valid NIZK proof (under crs) for
the following statement:

∃r,skV s.t. ct= Enc(pkC ,(skV ,P),r)
and match(pkV ,skV ) = true

ledger[P] := ledger[P]+$reward.
Set state := CLAIMED.

Timer: If state= CREATED and current time T > Tend:
ledger[C] := ledger[C]+$reward
state := ABORTED

Figure 3: A naı̈ve, flawed key theft contract (lacking
commission-fairness)

whether skV is the corresponding private key for some
public key pkV in a target public-key cryptosystem.

As noted above, this CSC is not commission-fair.
Thus we refer to it as KeyTheft-Naive.We use KeyTheft-
Naive as a helpful starting point for motivating and un-
derstanding the construction of a commission-fair con-
tract proposed later, called KeyTheft.

5.1 Flaws in KeyTheft-Naive

The contract KeyTheft-Naive fails to achieve
commission-fairness due to two shortcomings.

Revoke-and-claim attack. The CA V can revoke the
key skV and then itself submit the key for payment. The
CA then not only negates the value of the contract but
actually profits from it! This revoke-and-claim attack
demonstrates that KeyTheft-Naive is not commission-
fair in the sense of ensuring the delivery of a usable pri-
vate key skV .

Rushing attack. Another attack is a rushing attack.
As noted in Section 3, an adversary can arbitrarily re-
order messages—a reflection of possible attacks against
the network layer in a cryptocurrency. (See also the for-
mal blockchain model [45].) Thus, given a valid claim
from perpetrator P , a corrupt C can decrypt and learn
skV , construct another valid-looking claim of its own,
and make its own claim arrive before the valid one.

5.2 Fixing flaws in KeyTheft-Naive

We now show how to modify KeyTheft-Naive to prevent
the above two attacks and achieve commission-fairness.

Thwarting revoke-and-claim attacks. In a revoke-and-
claim attack against KeyTheft-Naive, V preemptively re-
vokes its public key pkV and replaces it with a fresh one
pk′V . As noted above, the victim can then play the role
of perpetrator P , submit skV to the contract and claim
the reward. The result is that C pays $reward to V and
obtains a stale key.

We address this problem by adding to the contract a
feature called reward truncation, whereby the contract
accepts evidence of revocation Πrevoke.

This evidence Πrevoke can be an Online Certificate Sta-
tus Protocol (OCSP) response indicating that pkV is no
longer valid, a new certificate for V that was unknown
at the time of contract creation (and thus not stored in
Contract), or a certificate revocation list (CRL) contain-
ing the certificate with pkV .
C could submit Πrevoke, but to minimize interaction

by C, KeyTheft could provide a reward $smallreward to
a third-party submitter. The reward could be small, as
Πrevoke would be easy for ordinary users to obtain.

The contract then provides a reward based on the in-
terval of time over which the key skV remains valid. Let
Tclaim denote the time at which the key skV is provided
and Tend be an expiration time for the contract (which
must not exceed the expiration of the certificate contain-
ing the targeted key). Let Trevoke be the time at which
Πrevoke is presented (Trevoke = ∞ if no revocation happens
prior to Tend). Then the contract assigns to P a reward of
f (reward, t), where t = min(Tend,Trevoke)−Tclaim.

We do not explore choices of f here. We note, how-
ever, that given that a CA key skV can be used to forge
certificates for rapid use in, e.g., malware or falsified
software updates, much of its value can be realized in a
short interval of time which we denote by δ . (A slant
toward up-front realization of the value of exploits is
common in general [22].) A suitable choice of reward
function should be front-loaded and rapidly decaying. A
natural, simple choice with this property is

f ($reward, t) =
{

0 : t < δ

$reward(1−ae−b(t−δ )) : t ≥ δ

for a < 1/2 and some positive real value b. Note that a
majority of the reward is paid provided that t ≥ δ .

Thwarting rushing attacks. To thwart rushing attacks,
we separate the claim into two phases. In the first phase,
P expresses an intent to claim by submitting a commit-
ment of the real claim message. P then waits for the
next round to open the commitment and reveal the claim
message. (Due to technical subtleties in the proof, the
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commitment must be adaptively secure; in the proof, the
simulator must be able to simulate a commitment with-
out knowing the string s being committed to, and later, be
able to claim the commitment to any string s.) In real-life
decentralized cryptocurrencies, P can potentially wait
multiple block intervals before opening the commitment,
to have higher confidence that the blockchain will not
fork. In our formalism, one round can correspond to one
or more block intervals.

Figure 4 gives a key theft contract KeyTheft that
thwarts revoke-and-claim and the rushing attacks.

5.3 Target and state exposure
An undesirable property of KeyTheft-Naive is that its
target / victim and state are publicly visible. V can
thus learn whether it is the target of KeyTheft-Naive. V
also observes successful claims—i.e., whether skV has
been stolen—and can thus take informed defensive ac-
tion. For example, as key revocation is expensive and
time-consuming, V might wait until a successful claim
occurs and only then perform a revoke-and-claim attack.

To limit target and state exposure, wenote two possi-
ble enhancements to KeyTheft. The first is a multi-target
contract, in which key theft is requested for any one of a
set of multiple victims. The second is what we call cover
claims, false claims that conceal any true claim. Our im-
plementation of KeyTheft, as specified in Figure 4, is a
multi-target contract, as this technique provides both par-
tial target and partial state concealment.

Multi-target contract. A multi-target contract so-
licits the private key of any of m potential victims
V1,V2, . . . ,Vm. There are many settings in which the pri-
vate keys of different victims are of similar value. For
example, a multi-target contract KeyTheft could offer a
reward for the private key skV of any CA able to issue
SSL/TLS certificates trusted by, e.g., Internet Explorer
(of which there are more than 650 [39]).

A challenge here is that the contract state is public,
thus the contract must be able to verify the proof for a
valid claim (private key) skVi without knowing which key
was furnished, i.e., without learning i. Our implementa-
tion shows that constructing such proofs as zk-SNARKs
is practical. (The contractor C itself can easily learn i
by decrypting skVi , generating pkVi

, and identifying the
corresponding victim.)

Cover claims. As the state of a contract is publicly vis-
ible, a victim V learns whether or not a successful claim
has been submitted to KeyTheft-Naive. This is particu-
larly problematic in the case of single-target contracts.

Rather than sending the NIZK proof π with ct, it is
possible instead to delay submission of π (and payment
of the reward) until Tend. (That is, Claim takes as input

Contract KeyTheft
Init: Set state := INIT. Let crs := KeyGennizk(1λ ) de-

note a hard-coded NIZK common reference string
generated during a trusted setup process.

Create: Same as in Contract KeyTheft-Naive (Figure 3),
except that an additional parameter ∆T is addition-
ally submitted by C.

Intent: Upon receiving (“intent”, cm) from some purported
perpetrator P:

Assert state= CREATED

Assert that P has not sent “intent” earlier
Store cm,P

Claim: Upon receiving (“claim”, ct, π , r) from P:
Assert state= CREATED

Assert P submitted (“intent”, cm) earlier such
that cm= comm(ct||π,r).

Continue in the same manner as in contract
KeyTheft-Naive, except that the ledger update
ledger[P] := ledger[P] + $reward does not take
place immediately.

Revoke: On receive (“revoke”, Πrevoke) from some R:
Assert Πrevoke is valid, and state 6= ABORTED.
ledger[R] := ledger[R]+$smallreward.
If state= CLAIMED:

Let t := (time elapsed since successful Claim).
Let P := (successful claimer).
rewardP := f ($reward, t).
ledger[P] := ledger[P]+ rewardP .

Else, rewardP := 0
ledger[C] := ledger[C]+$reward

−$smallreward− rewardP
Set state := ABORTED.

Timer: If state = CLAIMED and at least ∆T time elapsed
since Claim:
ledger[P] := ledger[P]+$reward;
Set state := ABORTED.

Else if current time T > Tend and state 6= ABORTED:
ledger[C] := ledger[C]+$reward.
Set state := ABORTED.

// P should not submit claims after Tend−∆T .

Figure 4: Key compromise CSC that thwarts the revoke-
and-claim attack and the rushing attack.

(“claim”, ct).) This approach conceals the validity of ct.
Note that even without π , C can still make use of ct.

A contract that supports such concealment can also
support an idea that we refer to as cover claims. A cover
claim is an invalid claim of the form (“claim”, ct), i.e.,
one in which ct is not a valid encryption of skV . Cover
claims may be submitted by C to conceal the true state
of the contract. So that C need not interact with the con-
tract after creation, the contract could parcel out small
rewards at time Tend to third parties that submit cover
claims. We do not implement cover claims in our ver-
sion of KeyTheft nor include them in Figure 4.s
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1-Target #threads RSA-2048 ECDSA P256
Key Gen.[C] 1 418.27 sec 926.308 sec

4 187.49 sec 421.05 sec
Eval. Key 0.78GB 1.80 GB
Ver. Key 17.29 KB 15.6 KB

Prove[P] 1 133.06 sec 325.73 sec
4 55.30 sec 150.80 sec

Proof 288 B 288 B
Verification [Contract] 0.0102 sec 0.0099 sec

500-Target #threads RSA-2048 ECDSA P256
Key Gen.[C] 1 419.93 sec 934.89 sec

4 187.88 sec 329.39 sec
Eval. Key 0.79 GB 1.81 GB
Ver. Key 1.14 MB 330.42 KB

Prove[P] 1 132.98 sec 325.73 sec
4 68.67 sec 149.19 sec

Proof 288 B 288 B
Verification [Contract] 0.0316 sec 0.0159 sec

Table 1: Performance of the key-compromise zk-SNARK cir-
cuit for Claim in the case of a 1-target and 500-target contracts.
[.] refers to the entity performing the computational work.

5.4 Commision-fairness: Formal definition
and proof

We define commission-fairness for key theft in terms of
an ideal functionality in Appendix D and also provide a
formal proof of security there for KeyTheft.

5.5 Implementation
We rely on zk-SNARKs for efficient realization of
the protocols above. zk-SNARKs are zero-knowledge
proofs of knowledge that are succinct and very efficient
to verify. zk-SNARKs have weaker security than what is
needed in UC-style simulation proofs. We therefore use a
generic transformation described in the Hawk work [45]
to lift security such that the zero-knowledge proof en-
sures simulation-extractable soundness. (In brief, a one-
time key generation phase is needed to generate two
keys: a public evaluation key, and a public verification
key. To prove a certain NP statement, an untrusted prover
uses the evaluation key to compute a succinct proof; any
verifier can use the public verification key to verify the
proof. The verifier in our case is the contract.) In our im-
plementation, we assume the key generation is executed
confidentially by a trusted party; otherwise a prover can
produce a valid proof for a false statement. To mini-
mize trust in the key generation phase, secure multi-party
computation techniques can be used as in [19].

zk-SNARK circuits for Claim. To estimate the proof
computation and verification costs required for Claim,
we implemented the above protocol for theft of RSA-
2048 and ECDSA P256 keys, which are widely used in
SSL/TLS certificates currently. The circuit has two main
sub-circuits: a key-check circuit, and an encryption cir-

cuit 2 The encryption circuit was realized using RSAES-
OAEP [44] with a 2048-bit key. Relying on compilers for
high-level implementation of these algorithms may pro-
duce expensive circuits for the zk-SNARK proof com-
putation. Instead, we built customized circuit genera-
tors that produce more efficient circuits. We then used
the state-of-the-art zk-SNARK library [20] to obtain the
evaluation results. Table 1 shows the results of the eval-
uation of the circuits for both single-target and multi-
target contracts. The experiments were conducted on an
Amazon EC2 r3.2xlarge instance with 61GB of memory
and 2.5 GHz processors.

The results yield two interesting observations: i) Once
a perpetrator obtains the secret key of a TLS public key,
computing the zk-SNARK proof would require much
less than an hour, costing less than 1 USD [4] for either
single or multi-target contracts; ii) The overhead intro-
duced by using a multi-target contract with 500 keys on
the prover’s side is minimal. This minimized overhead
for the 500-key contract is obtained by the use of a very
cheap multiplexing circuit with a secret input, while us-
ing the same components of the single-target case as is.
On the other hand, in the 500-key case, the contract will
have to store a larger verification key, resulting in verifi-
cation times of 35msec for RSA. Further practical imple-
mentation optimizations, though, can reduce the contract
verification key size and overhead.

Validation of revoked certificates. The reward func-
tion in the contract above relies on certificate revocation
time, and therefore the contract needs modules that can
process certificate revocation proofs, such as CRLs and
OCSP responses, and verify the CA digital signatures on
them. As an example, we measured the running time of
openssl verify -crl_check command, testing the
revoked certificate at [12] and the CRL last updated at [8]
on Feb 15th, 2016, that had a size of 143KB. On average,
the verification executed in about 0.016 seconds on a 2.3
GHz i7 processor. The signature algorithm was SHA-
256 with RSA encryption, with a 2048-bit key. Since
OCSP responses can be smaller than CRLs, the verifica-
tion time could be even less for OCSP.

The case of multi-target contracts. Verifying the re-
vocation proof for single-target contracts is straightfor-
ward: The contract can determine whether a revocation
proof corresponds to the targeted key. In multi-target
contracts, though, the contract does not know which tar-
get key corresponds to the proof of key theft P submit-
ted. Thus, a proof is needed that the revocation corre-
sponds to the stolen key, and it must be submitted by C.

We built a zk-SNARK circuit through which C can
prove the connection between the ciphertext submitted

2The circuit also has other signature and encryption sub-circuits
needed for simulation extractability – see Appendix C.3.
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by the perpetrator and a target key with a secret index.
For efficiency, we eliminated the need for the key-check
sub-circuit in Revoke by forcing P to append the se-
cret index to the secret key before applying encryption
in Claim. The evaluation in Table 2 illustrates the effi-
ciency of the verification done by the contract receiving
the proof, and the practicality for C of constructing the
proof. In contrast to the case for Claim, the one-time key
generation for this circuit must be done independently
from C, so that C cannot cheat the contract. We note that
the Revoke circuit we built is invariant to the cryptosys-
tem of the target keys.

#threads RSA-2048 ECDSA P256
Key Gen. 1 394.93 sec 398.53 sec

4 178.33 sec 162.537 sec
Eval. Key 0.74 GB 0.74 GB
Ver. Key 14.62 KB 14.62 KB

Prove[C] 1 131.38 sec 133.88 sec
4 68.66 sec 69.036 sec

Proof 288 B 288 B
Verification [Contract] 0.0098 sec 0.0097 sec

Table 2: Performance of the key-compromise zk-SNARK cir-
cuit for Revoke needed in the case of multi-target contract. [.]
refers to the entity performing the computational work.

6 Calling-Card Crimes

As noted above, decentralized smart contract systems
(e.g., Ethereum) have supporting services that provide
authenticated data feeds, digitally signed attestations to
news, facts about the physical world, etc. While still
in its infancy, this powerful capability is fundamental to
many applications of smart contracts and will expand the
range of CSCs very broadly to encompass events in the
physical world, as in the following example:

Example 2 (Assassination CSC) Contractor C posts a
contract Assassinate for the assassination of Senator X.
The contract rewards the perpetrator P of this crime.

The contract Assassinate takes as input from a perpe-
trator P a commitment vcc specifying in advance the de-
tails (day, time, and place) of the assassination. To claim
the reward, P decommits vcc after the assassination. To
verify P’s claim, Assassinate searches an authenticated
data feed on current events to confirm the assassination
of Senator X with details matching vcc.

This example also illustrates the use of what we re-
fer to as a calling card, denoted cc. A calling card is
an unpredictable feature of a to-be-executed crime (e.g.,
in Example 2, a day, time, and place). Calling cards,
alongside authenticated data feeds, can support a general
framework for a wide variety of CSCs.

A generic construction for a CSC based on a calling
card is as follows. P provides a commitment vcc to a

calling card cc to a contract in advance. After the com-
mission of the crime, P proves that cc corresponds to vcc
(e.g., decommits vcc). The contract refers to some trust-
worthy and authenticated data feed to verify that: (1) The
crime was committed and (2) The calling card cc matches
the crime. If both conditions are met, the contract pays a
reward to P .

Intuitively, we define commission fairness to mean
that P receives a reward iff it was responsible for car-
rying out a commissioned crime. (A formal definition is
given in Appendix H.)

In more detail, let CC be a set of possible calling cards
and cc ∈ CC denote a calling card. As noted above, it
is anticipated that an ecosystem of authenticated data
feeds will arise around smart contract systems such as
Ethereum. We model a data feed as a sequence of pairs
from a source S, where (s(t),σ(t)) is the emission for
time t. The value s(t) ∈ {0,1}∗ here is a piece of data
released at time t, while σ(t) is a corresponding digital
signature; S has an associated private / public key pair
(skS ,pkS) used to sign / verify signatures.

Note that once created, a calling-card contract requires
no further interaction from C, making it hard for law en-
forcement to trace C using subsequent network traffic.

6.1 Example: website defacement contract

As an example, we specify a simple CSC SiteDeface for
website defacement. The contractor C specifies a website
url to be hacked and a statement stmt to be displayed.
(For example, stmt = ”Anonymous. We are Legion. We
do not Forgive...” and url= whitehouse.gov.)

We assume a data feed that authenticates website con-
tent, i.e., s(t) = (w,url, t), where w is a representation of
the webpage content and t is a timestamp, denoted for
simplicity in contract time. (For efficiency, w might be
a hash of and pointer to the page content.) Such a feed
might take the form of, e.g., a digitally signed version of
an archive of hacked websites (e.g., zone-h.com).

We also use a special function preamble(a,b) that ver-
ifies b = a||x for strings a,b and some x. The function
SigVer does the obvious signature verification operation.

As example parameterization, we might let CC =
{0,1}256, i.e., cc is a 256-bit string. A perpetrator P
simply selects a calling card cc

$←{0,1}256 and commit-
ment vcc := commit(cc,P;ρ), where commit denotes a
commitment scheme, and ρ ∈ {0,1}256 a random string.
(In practice, HMAC-SHA256 is a suitable choice for
easy implementation in Ethereum, given its support for
SHA-256.) P decommits by revealing all arguments to
commit.

The CSC SiteDeface is shown in Figure 5.

Remarks. SiteDeface could be implemented alterna-
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Contract SiteDeface
Init: On receiving ($reward, pkS , url, stmt) from some

C:
Store ($reward, pkS , url, stmt)
Set i := 0, Tstart := T

Commit: Upon receiving commitment vcc from some P:
Store vcci := vcc and Pi := P ; i := i+1.

Claim: Upon receiving as input a tuple (cc,ρ,σ ,w, t) from
some P:

Find smallest i such that vcci =
commit(cc,P;ρ), abort if not found.
Assert stmt ∈ w
Asset preamble(cc,w) = true

Assert t ≥ Tstart
Assert SigVer(pkS ,(w,url, t),σ) = true

Send $reward to Pi and abort.

Figure 5: CSC for website defacement

tively by having P generate cc as a digital signature.
Our implementation, however, also accommodates short,
low-entropy calling cards cc, which is important for gen-
eral calling-card CSCs. See Appendix G.

Implementation. Given an authenticated data feed, im-
plementing SiteDeface would be straightforward and ef-
ficient. The main overhead lies in the Claim module,
where the contract computes a couple of hashes and val-
idates the feed signature on retrieved website data. As
noted in Section 4, a hash function call can be computed
in very short time (4µsec), while checking the signature
would be more costly. For example, if the retrieved con-
tent is 100KB, the contract needs only about 10msec to
verify an RSA-2048 signature.

6.2 Commission-fairness: Formal defini-
tion

We give a formal definition of commission-fairness for
a general calling-card CSC in Appendix H. We do not
provide a security proof, as this would require modeling
of physical-world systems, which is outside the scope of
this paper.

6.3 Other calling-card crimes
Using a CSC much like SiteDeface, a contractor C can
solicit many other crimes, e.g., assassination, assault,
sabotage, hijacking, kidnapping, denial-of-service at-
tacks, and terrorist attacks. A perpetrator P must be able
to designate a calling card that is reliably reported by an
authenticated data feed. (If C is concerned about suppres-
sion of information in one source, it can of course cre-
ate a CSC that references multiple sources, e.g., multiple
news feeds.) We discuss these issues in Appendix G.

7 Countermeasures

The main aim of our work is to emphasize the impor-
tance of research into countermeasures against CSCs for
emerging smart contract systems such as Ethereum. We
briefly discuss this challenge and one possible approach.

Ideas such as blacklisting “tainted” coins /
transactions—those known to have been involved
in criminal transactions—have been brought forward
for cryptocurrencies such as Bitcoin. A proactive
alternative noted in Section 2 is an identity-escrow idea
in early (centralized) e-cash systems sometimes referred
as “trustee-based tracing” [24, 62]. Trustee-tracing
schemes permitted a trusted party (“trustee”) or a
quorum of such parties to trace monetary transactions
that would otherwise remain anonymous. In decentral-
ized cryptocurrencies, however, users do not register
identities with authorities—and many would object to
doing so. It would be possible for users to register vol-
untarily with authorities of their choice, and for users to
choose only to accept only currency they deem suitably
registered. The notion of tainting coins, however, has
been poorly received by the cryptocurrency community
because it undermines the basic cash-like property of
fungibility [13, 51], and trustee-based tracing would
have a similar drawback. It is also unclear what entities
should be granted the authority to perform blacklisting
or register users.

We propose instead the notion of trustee-neutralizable
smart contracts. A smart contract system might be de-
signed such that an authority, quorum of authorities, or
suitable set of general system participants is empow-
ered to remove a contract from the blockchain. Such
an approach would have a big advantage over traditional
trustee-based protections, in that it would not require
users to register identities. Whether the idea would be
palatable to cryptocurrency communities and whether a
broadly acceptable set of authorities could be identified
are, of course, open questions, as are the right supporting
technical mechanisms. We believe, however, that such
a countermeasure might prove easier to implement than
blacklisting or user registration.

8 Conclusion

We have demonstrated that a range of commission-fair
criminal smart contracts (CSCs) are practical for im-
plementation in decentralized currencies with smart con-
tracts. We presented three—leakage of secrets, key theft,
and calling-card crimes—and showed that they are effi-
ciently implementable with existing cryptographic tech-
niques, given suitable support in smart contract systems
such as Ethereum. The contract PublicLeaks and its pri-
vate variant can today be efficiently implemented in Ser-
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pent, an Ethereum scripting language. KeyTheft would
require only modest, already envisioned opcode support
for zk-SNARKs for efficient deployment. Calling-card
CSCs will be possible given a sufficiently rich data-feed
ecosystem. Many more CSCs are no doubt possible.

We emphasize that smart contracts in distributed cryp-
tocurrencies have numerous promising, legitimate appli-
cations and that banning smart contracts would be neither
sensible nor, in all likelihood, possible. The urgent open
question raised by our work is thus how to create safe-
guards against the most dangerous abuses of such smart
contracts while supporting their many powerful, benefi-
cial applications.
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A Smart Contract Example

As a warm-up example, Figure 6 gives a simple smart
contract using our notation system. This contract sells
domain names. A name is awarded to the first bidder to
offer at least $price currency units. When a presale time
period expires indicated by Tend, the price of each domain
name is increased from 1 to 10 currency units. (The con-
tract does not handle assignment of domain names.)

Init: Set all := {}, Tend := 10/12/2015, $price := 1.

Register: On receiving ($amt, name) from some party P:

Assert name /∈ all and $amt≥ $price.

ledger[P] := ledger[P]−$amt.

all := all∪{name}.

Timer: If T > Tend and $price= 1: set $price := 10.

Figure 6: Warmup: a simple smart contract for do-
main name registration. The formal operational se-
mantics of a contract program is described in Kosba et
al. [45].

B Future Directions: Other CSCs

The CSCs we have described in the body of the paper
are just a few examples of the broad range of such con-
tracts possible with existing technologies. Also deserv-

ing study in a more expansive investigation are CSCs
based on emerging or as yet not practical technologies.
In this appendix, we give a couple of examples.

Password theft (using SGX): It is challenging to create
a smart contract PwdTheft for theft of a password PW
(or other credentials such as answers to personal ques-
tions) sufficient to access a targeted account (e.g., web-
mail account) A. There is no clear way forP to prove that
PW is valid for A. Leveraging trusted hardware, how-
ever, such as Intel’s recently introduced Software Guard
eXtension (SGX) set of x86-64 ISA extensions [43],
it is possible to craft an incentive compatible contract
PwdTheft. SGX creates a confidentiality- and integrity-
protected application execution environment called an
enclave; it protects against even a hostile OS and the
owner of the computing device. SGX also supports gen-
eration of a quote, a digitally signed attestation to the
hash of a particular executable app in an enclave and
permits inclusion of app-generated text, such as an app-
specific key pair (skapp,pkapp). A quote proves to a re-
mote verifier that data came from an instantiation of app
on an SGX-enabled host.

We sketch the design of an executable app for
PwdTheft. It does the following: (1) Ingests the pass-
word PW from P and (pkC , A) from the contract; (2)
Creates and authenticates (via HTTPS, to support source
authentication) a connection to the service on which A
is located; and logs into A using PW ; and (3) If steps
(1) and (2) are successful, sends to PwdTheft the val-
ues ct= encpkC [PW ], σ = Sigskapp [ct], and a quote α for
app. The functionality Claim in PwdTheft inputs these
values and verifies σ and α , ensuring that PW is a valid
password for A. At this point, PwdTheft releases a re-
ward to P; we omit details for this step. Figure 7 depicts
the basic setup for this CSC.

After delivery of PW , P could cheat by changing PW ,
thus retaining access to A but depriving C of it. It is possi-
ble for app thus to include a step (2a) that changes PW to
a fresh, random password PW ′ without revealing PW ′ to
P . This is in effect a “proof of ignorance,” a capability of
trusted hardware explored in [50]. To ensure freshness,
app might also ingest a timestamp, e.g., the current block
header in the cryptocurrency.

Sale of 0-days: A zero-day exploit (“0-day”) is a piece
of code that exploits a target piece of software through
a vulnerability as yet unknown to the developers and
for which patches are thus unavailable. A substan-
tial market [36] exists for the sale of 0-days as cyber-
weaponry [60]. Demonstrating the validity of a “0-day”
without revealing it has been a persistent problem in 0-
day markets, which consequently rely heavily on reputa-
tions [58].

SGX could enable proofs of validity of a 0-days: app
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Figure 7: Diagram of execution of PwdTheft with appli-
cation app running on SGX-enabled platform. The steps
of operation are described in text.

would in this case simulate an execution environment
and attest to the state of a target piece of software af-
ter execution of the 0-day. An alternative, in principle,
is to construct a zk-SNARK, although, simulation of a
complete execution environment would carry potentially
impractical overhead.

Either technique would support the creation of a smart
contract for the sale of 0-day vulnerabilities, greatly sim-
plifying 0-day markets. Additionally, sales could be
masked using an idea like that of cover claims, namely by
formulating contracts EITHER to sell a 0-day vulnerabil-
ity for $X OR sell $X worth of cryptocurrency. “Cover”
or “decoy” contracts could then be injected into the mar-
ketplace.

C Preliminaries

Our CSCs rely on a cryptographic building block
called non-interactive zero-knowledge proofs (NIZK).
We adopt exactly the same for definitions for NIZKs as
in Kosba et al. [46]. For completeness, we restate their
definitions below.

Notation. In the remainder of the paper, f (λ ) ≈ g(λ )
means that there exists a negligible function ν(λ ) such
that | f (λ )−g(λ )|< ν(λ ).

C.1 Non-Interactive Zero-Knowledge Proofs

A non-interactive zero-knowledge proof system (NIZK)
for an NP language L consists of the following algo-
rithms:

• crs ← K(1λ ,L), also written as crs ←
KeyGennizk(1λ ,L): Takes in a security param-
eter λ , a description of the language L, and
generates a common reference string crs.

• π←P(crs,stmt,w): Takes in crs, a statement stmt,
a witness w such that (stmt,w) ∈ L, and produces a
proof π .

• b ← V(crs,stmt,π): Takes in a crs, a statement
stmt, and a proof π , and outputs 0 or 1, denoting
accept or reject.

• (ĉrs,τ,ek) ← K̂(1λ ,L): Generates a simulated
common reference string ĉrs, trapdoor τ , and ex-
tract key ek

• π ← P̂(ĉrs,τ,stmt): Uses trapdoor τ to produce a
proof π without needing a witness

Perfect completeness. A NIZK system is said to be per-
fectly complete, if an honest prover with a valid witness
can always convince an honest verifier. More formally,
for any (stmt,w) ∈ R, we have that

Pr
[

crs←K(1λ ,L), π ←P(crs,stmt,w) :
V(crs,stmt,π) = 1

]
= 1

Computational zero-knowlege. Informally, a NIZK
system is computationally zero-knowledge, if the proof
does not reveal any information about the witness to any
polynomial-time adversary. More formally, a NIZK sys-
tem is said to computationally zero-knowledge, if for all
non-uniform polynomial-time adversaryA, we have that

Pr
[
crs←K(1λ ,L) :AP(crs,·,·)(crs) = 1

]
≈ Pr

[
(ĉrs,τ,ek)← K̂(1λ ,L) :AP̂1(ĉrs,τ,·,·)(ĉrs) = 1

]
In the above, P̂1(ĉrs,τ,stmt,w) verifies that (stmt,w) ∈
L, and if so, outputs P̂(ĉrs,τ,stmt) which simulates
a proof without knowing a witness. Otherwise, if
(stmt,w) /∈ L, the experiment aborts.

Computational soundness. A NIZK scheme for the
language L is said to be computationally sound, if for
all polynomial-time adversaries A,

Pr
[

crs←K(1λ ,L),(stmt,π)←A(crs) :
(V(crs,stmt,π) = 1)∧ (stmt /∈ L)

]
≈ 0

Simulation sound extractability. Simulation sound
extractability says that even after seeing many simu-
lated proofs, whenever the adversary makes a new proof,
a simulator is able to extract a witness. Simulation
extractability implies simulation soundness and non-
malleability, since if the simulator can extract a valid
witness from an adversary’s proof, the statement must
belong to the language.

More formally, we say a NIZK for a language L is
(strongly) simulation sound extractable iff there exists an
extractor E such that for all polynomial-time adversary
A, the following holds:

Pr

 (ĉrs,τ,ek)← K̂(1λ )

(stmt,π)←AP̂(ĉrs,τ,·)(ĉrs,ek)
w← E(ĉrs,ek,stmt,π)

:
(stmt,π) /∈ Q and
(stmt,w) /∈ RL and
V(ĉrs,stmt,π) = 1


= negl(λ )
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where Q is the set of statement-proof pairs generated by
the oracle calls to P̂ .

C.2 Succinct Non-Interactive ARguments
of Knowledge (SNARKs)

A SNARK is a NIZK scheme that is perfectly complete,
computationally zero-knowledge, and with the additional
properties of being succinct and having a knowledge ex-
tractor (which is a stronger property than soundness):

Succinctness. A SNARK is said to be succinct if an
honestly generated proof has poly(λ ) bits and that the
verification algorithm V(crs,stmt,π) runs in poly(λ ) ·
O(|stmt|) time.

Knowledge extraction. Knowledge extraction property
says that if a proof generated by an adversary is accepted
by the verifier, then the adversary “knows” a witness for
the given instance. Formally, a SNARK for language L
satisfies the knowledge extraction property iff:

For all polynomial-time adversary A, there exists a
polynomial-time extractor E , such that for all uniform
advice string z,

Pr

 crs←K(1λ ,L)
(stmt,π)←A(crs,z)
a←E(crs,z)

:
V(crs,stmt,π) = 1
(stmt,a) /∈ RL

≈ 0

Note that the knowledge extraction property implies
computationally soundness (defined for NIZK), as a
valid witness is extracted.

C.3 Instantiating Simulation Sound Ex-
tractable NIZKs

The composability of cryptographic building blocks such
as zero-knowledge proofs is of vital importance when
constructing larger protocols. In practice, this ensures
that each cryptographic building block or protocol does
not interfere with other (possibly concurrently executing)
protocol instances. It has been shown [42] that simula-
tion sound extractability for NIZKs is roughly equivalent
to universal composable [26, 27, 29] security for NIZKs.

In our implementations, we use the techniques de-
scribed by Kosba et al. [46] to realize simulation
sound extractable NIZKs (formally defined in Sec-
tion C.1) from regular SNARKs (formally defined in Ap-
pendix C.2).

Ideal-NaiveKeyTheft

Init: Set state := INIT.

Create: Upon recipient of (“create”,$reward,pkV ,Tend) from
some contractor C:

Notify (“create”,$reward,pkV ,Tend,C) to S.

Assert ledger[C]≥ $reward.

ledger[C] := ledger[C]−$reward

state := CREATED.

Intent: On recv (“intent”, skV ) from some perpetrator P:

Assert state= CREATED.

Notify (“intent”,P) to S.

Assert this is the first “intent” received from P .

Store (P,skV ).

Claim: Upon recipient of (“claim”) from P:

Assert state= CREATED.

Assert that P has sent (“intent”, skV ) earlier.

Assert match(pkV ,skV ) = 1

Notify (“claim”,P) to S.

If C is corrupted, send skV to S.

ledger[P] := ledger[P]+$reward

Send skV to C
Set state := CLAIMED.
/* reward goes to 1st successful claim*/

Timer: If state= CREATED and current time T > Tend:

Set ledger[C] := ledger[C]+$reward

Set state := ABORTED.

Figure 8: Ideal program for naive key theft. This version
of the ideal program defends against the rushing attack,
but does not protect against the revoke-and-claim attack.

D Formal Protocols for Key Theft Con-
tract

D.1 Ideal Program for the Naive Key Theft

The ideal program for the naive key theft contract is
given in Figure 8. We stress that here, this naive key
theft ideal program is different from the strawman exam-
ple in the main body (Figure 3). For ease of understand-
ing, Figure 3 in the main body is prone to a rushing at-
tack by a corrupted contractor. Here, our naive key theft
ideal program secures against the rushing attack – how-
ever, this naive key theft ideal program is still prone to
the revoke-and-claim attack (see Section 5.1). We will
fix the revoke-and-claim attack later in Appendix D.4
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Contract-NaiveKeyTheft

Init: Set state := INIT. Let crs := KeyGennizk(1λ )
denote a hard-coded NIZK common reference
string generated during a trusted setup process.

Create: Upon receiving (“create”, $reward, pkV , Tend)
from some contractor C := (pkC , . . .):

Assert state= INIT.

Assert ledger[C]≥ $reward.

ledger[C] := ledger[C]−$reward.

Set state := CREATED.

Intent: Upon receiving (“intent”, cm) from some pur-
ported perpetrator P:

Assert state= CREATED.

Assert that P did not send “intent” earlier.

Store cm,P .

Claim: Upon receiving (“claim”, ct, π , s) from P:

Assert state= CREATED.

Assert P sent (“intent”, cm) earlier such that
cm := comm(ct||π,s).
Assert that π is a valid NIZK proof (under crs)
for the following statement:

∃r,skV s.t. ct= Enc(pkC ,(skV ,P),r)
and match(pkV ,skV) = true

ledger[P] := ledger[P]+$reward.

Send (“claim”, ct) to the contractor C.

Set state := CLAIMED.

Timer: If state= CREATED and current time T > Tend:

ledger[C] := ledger[C]+$reward

state := ABORTED

Figure 9: A naı̈ve, flawed key theft contract (lacking
incentive compatibility). The notation pkC serves as a
short-hand for C.epk. This figure is a repeat of Figure 3
for the readers’ convenience.

Remarks. We make the following remarks about this
ideal functionality:

• All bank balances are visible to the public.

• Bank transfers are guaranteed to be correct.

Prot-NaiveKeyTheft

Contractor C:

Create: Upon receiving input (“create”, $reward, pkV ,Tend,
C):

Send (“create”, $reward, pkV ,Tend) to
G(Contract-NaiveKeyTheft).

Claim: Upon receiving a message (“claim”, ct) from
G(Contract-NaiveKeyTheft):

Decrypt and output m :=Dec(skC ,ct).

Perpetrator P:

Intent: Upon receiving input (“intent”, skV , P):

Assert match(pkV ,skV ) = true

Compute ct := Enc(pkC ,(skV ,P),s) where s is
randomly chosen.

Compute a NIZK proof π for the following state-
ment:

∃r,skV s.t. ct= Enc(pkC ,(skV ,P),r)
and match(pkV ,skV ) = true

Let cm := comm(ct||π,s) for some random s ∈
{0,1}λ .

Send (“intent”, cm) to
G(Contract-NaiveKeyTheft).

Claim: Upon receiving input (“claim”):

Assert an “intent” message was sent earlier.

Send (“claim”, ct, π , s) to
G(Contract-NaiveKeyTheft).

Figure 10: User-side programs for naive key theft. The
notation pkC serves as a short-hand for C.epk.

• The ideal functionality captures transaction non-
malleability, and precludes any front-running attack,
since our real-world execution model assumes a rush-
ing adversary.

D.2 Full Protocol for Naive Key Theft
The contract and full protocols for naive key theft are
given in Figures 9 and 10. Specifically, Figure 9 is a
repeat of Figure 3 for the readers’ convenience.

Theorem 1 Assume that the encryption scheme
(Enc,Dec) is perfectly correct and semantically
secure, the NIZK scheme is perfectly complete, com-
putationally zero-knowledge and simulation sound
extractable, the commitment scheme comm is adaptively
secure, then the above protocol securely emulates
F(Ideal-NaiveKeyTheft).
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D.3 Proofs for Naive Key Theft Contract
We now prove Theorem 1. For any real-world adver-
sary A, we construct an ideal-world simulator S, such
that no polynomial-time environment E can distinguish
whether it is in the real or ideal world. We first describe
the construction of the simulator S and then argue the
indistinguishability of the real and ideal worlds.

D.3.1 Ideal-World Simulator

Due to Canetti [26], it suffices to construct a simulator S
for the dummy adversary that simply passes messages to
and from the environment E . The ideal-world simulator
S also interacts with the F(Ideal-NaiveKeyTheft) ideal
functionality. Below we construct the user-defined por-
tion of our simulator simP. Our ideal adversary S can
be obtained by applying the simulator wrapper S(simP).
The simulator wrapper modularizes the simulator con-
struction by factoring out the common part of the simu-
lation pertaining to all protocols in this model of execu-
tion.

Init. The simulator simP runs (ĉrs,τ,ek) ←
NIZK.K̂(1λ ), and gives ĉrs to the environment E , and
retains the trapdoor τ .

Simulating honest parties. When the environment E
sends inputs to honest parties, the simulator S needs to
simulate messages that corrupted parties receive, from
honest parties or from functionalities in the real world.
The honest parties will be simulated as below.

• Environment E sends input (“create”, $reward,
pkV ,Tend,C) to an honest contractor C: Simulator
simP receives (“create”, $reward, pkV ,Tend,C) from
F(Ideal-NaiveKeyTheft). simP forwards the mes-
sage to the simulated inner contract functionality
G(Contract-NaiveKeyTheft), as well as to the envi-
ronment E .

• Environment E sends input (“intent”, skV ) to an hon-
est perpetrator P: Simulator simP receives notification
from the ideal functionality F(Ideal-NaiveKeyTheft)
without seeing skV . Simulator simP now computes ct
to be an encryption of the 0 vector. simP then sim-
ulates the NIZK π . simP now computes the com-
mitment cm honestly. simP sends (“intent”,cm) to
the simulated G(Contract-NaiveKeyTheft) functional-
ity, and simulates the contract functionality in the ob-
vious manner.

• Environment E sends input (“claim”) to an honest per-
petrator P:

Case 1: Contractor C is honest. simP sends the
(“claim”, ct, π , r) values to the internally simu-
lated G(Contract-NaiveKeyTheft) functionality,

where ct and π are the previously simulated val-
ues and r is the randomness used in the commit-
ment cm earlier.

Case 2: Contractor C is corrupted. simP receives skV
from F(Ideal-NaiveKeyTheft).
simP computes (ct′,π ′) terms using the hon-
est algorithm. simP now explains the com-
mitment cm to the correctly formed (ct′,π ′)
values. Notice here we rely the commitment
scheme being adaptively secure. Suppose the
corresponding randomness is r′ simP now sends
(“claim”,ct′,π ′,r′) to the internally simulated
G(Contract-NaiveKeyTheft) functionality, and
simulates the contract functionality in the obvi-
ous manner.

Simulating corrupted parties. The following mes-
sages are sent by the environment E to the simula-
tor S(simP) which then forwards it onto simP. All
of the following messages received by simP are of
the “pseudonymous” type, we therefore omit writing
“pseudonymous”.

• simP receives an intent message (“intent”, cm):
forward it to the internally simulated G(Contract-
NaiveKeyTheft) functionality,

• simP receives a claim message (“claim”, ct,π,r,P):
If π verifies, simulator simP runs the NIZK’s extrac-
tion algorithm, and extracts a set of witnesses includ-
ing skV . S now sends (“claim”, skV ,P) to the ideal
functionality F(Ideal-NaiveKeyTheft).

• Simulator simP receives a message (“create”, $reward,
pkV ,Tend,C): do nothing.

D.3.2 Indistinguishability of Real and Ideal Worlds

To prove indistinguishability of the real and ideal worlds
from the perspective of the environment, we will go
through a sequence of hybrid games.

Real world. We start with the real world with a dummy
adversary that simply passes messages to and from the
environment E .

Hybrid 1. Hybrid 1 is the same as the real world, ex-
cept that now the adversary (also referred to as a sim-
ulator) will call (ĉrs,τ,ek) ← NIZK.K̂(1λ ) to perform
a simulated setup for the NIZK scheme. The simulator
will pass the simulated ĉrs to the environment E . When
an honest perpetrator P produces a NIZK proof, the sim-
ulator will replace the real proof with a simulated NIZK
proof before passing it onto the environment E . The
simulated NIZK proof can be computed by calling the
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NIZK.P̂(ĉrs,τ, ·) algorithm which takes only the state-
ment as input but does not require knowledge of a wit-
ness.

Fact 1 It is not hard to see that if the NIZK scheme is
computational zero-knowledge, then no polynomial-time
environment E can distinguish Hybrid 1 from the real
world except with negligible probability.

Hybrid 2. The simulator simulates the G(Contract-
NaiveKeyTheft) functionality. Since all messages to
the G(Contract-NaiveKeyTheft) functionality are pub-
lic, simulating the contract functionality is trivial. There-
fore, Hybrid 2 is identically distributed as Hybrid 1 from
the environment E’s view.

Hybrid 3. Hybrid 3 is the same as Hybrid 2 except for
the following changes. When an honest party sends a
message to the contract (now simulated by the simulator
S), it will sign the message with a signature verifiable
under an honestly generated nym. In Hybrid 3, the sim-
ulator will replace all honest parties’ nyms and generate
these nyms itself. In this way, the simulator will simulate
honest parties’ signatures by signing them itself. Hybrid
3 is identitally distributed as Hybrid 2 from the environ-
ment E’s view.

Hybrid 4. Hybrid 4 is the same as Hybrid 3 except for
the following changes. When the honest perpetrator P
produces an ciphertext ct and if the contractor is also un-
corrupted, then simulator will replace this ciphertext with
an encryption of 0 before passing it onto the environment
E .

Fact 2 It is not hard to see that if the encryption scheme
is semantically secure, then no polynomial-time environ-
ment E can distinguish Hybrid 4 from Hybrid 3 except
with negligible probability.

Hybrid 5. Hybrid 5 is the same as Hybrid 4 except the
following changes. Whenever the environment E passes
to the simulator S a message signed on behalf of an hon-
est party’s nym, if the message and signature pair was not
among the ones previously passed to the environment E ,
then the simulator S aborts.

Fact 3 Assume that the signature scheme employed is
secure, then the probability of aborting in Hybrid 5 is
negligible. Notice that from the environment E’s view,
Hybrid 5 would otherwise be identically distributed as
Hybrid 4 modulo aborting.

Hybrid 6. Hybrid 6 is the same as Hybrid 5 except
for the following changes. Whenever the environment

passes (“claim”, ct,π) to the simulator (on behalf of cor-
rupted party P), if the proof π verifies under the state-
ment (ct,P), then the simulator will call the NIZK’s ex-
tractor algorithm E to extract a witness (r,skV). If the
NIZK π verifies under the statement (ct,P), and the ex-
tracted skV does not satisfy match(pkV ,skV) = 1, then
abort the simulation.

Fact 4 Assume that the NIZK is simulation sound ex-
tractable, then the probability of aborting in Hybrid 6
is negligible. Notice that from the environment E’s view,
Hybrid 6 would otherwise be identically distributed as
Hybrid 5 modulo aborting.

Finally, observe that Hybrid 6 is computationally in-
distinguishable from the ideal simulation S unless one
of the following bad events happens:

• The skV decrypted by an honest contractor C is differ-
ent from that extracted by the simulator S. However,
given that the encryption scheme is perfectly correct,
this cannot happen.

• The honest public key generation algorithm results
in key collisions. Obviously, this happens with neg-
ligible probability if the encryption and signature
schemes are secure.

Fact 5 Given that the encryption scheme is semanti-
cally secure and perfectly correct, and that the signa-
ture scheme is secure, then Hybrid 6 is computation-
ally indistinguishable from the ideal simulation to any
polynomial-time environment E .

D.4 Extension to Incentive Compatible
Key Theft Contract

Ideal program. The ideal program for an incentive
compatible key theft contract is given in Figure 11.

Contract. The incentive compatible key theft contract
is given in Figure 12 (a repeat of Figure 4 for the readers’
convenience).

Protocol. The user-side programs for the incentive com-
patible key theft contract are supplied in Figure 13.

Theorem 2 (Incentive compatible key theft contract)
Assume that the encryption scheme (Enc,Dec) is per-
fectly correct and semantically secure, the NIZK scheme
is perfectly complete, computationally zero-knowledge
and simulation sound extractable, then the protocol
described in Figures 12 and 13 securely emulates
F(Ideal-NaiveKeyTheft).

Proof: A trivial extension of the proof of Theorem 1,
the naive key theft case.
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Ideal-KeyTheft

Init: Set state := INIT.

Create: Upon recipient of (“create”,$reward,pkV ,Tend,∆T )
from some contractor C:
Same as Ideal-NaiveKeyTheft (Figure 8), and addi-
tionally store ∆T .

Intent: Upon recipient of (“intent”, skV ) from some perpe-
trator P: Same as Ideal-NaiveKeyTheft.

Claim: Upon recipient of (“claim”) from perpetrator P:
Same as Ideal-NaiveKeyTheft except that the ledger
update ledger[P] := ledger[P] + $reward does not
happen.

Revoke: Upon receiving (“revoke”, Πrevoke) from some R:

Notify S of (“revoke”, Πrevoke)

Assert Πrevoke is valid, and state 6= ABORTED.

ledger[R] := ledger[R]+$smallreward.

If state= CLAIMED:

t := (time elapsed since successful Claim).

P := (successful claimer).

rewardP := f ($reward, t).

ledger[P] := ledger[P]+ rewardP .

Else, rewardP := 0

ledger[C] := ledger[C]+$reward− rewardP
−$smallreward

Set state := ABORTED.

Timer: If state = CLAIMED and at least ∆T time elapsed
since successful Claim:

ledger[P] := ledger[P]+$reward;

Set state := ABORTED.

Else if current time T > Tend and state 6= ABORTED:

ledger[C] := ledger[C]+$reward.

Set state := ABORTED.

Figure 11: Thwarting revoke-and-claim attacks in the
key theft ideal program.

Contract-KeyTheft

Init: Set state := INIT. Let crs := KeyGennizk(1λ ) denote
a hard-coded NIZK common reference string gener-
ated during a trusted setup process.

Create: Same as in Contract-NaiveKeyTheft (Figure 9), ex-
cept that an additional parameter ∆T is additionally
submitted by C.

Intent: Same as Contract-NaiveKeyTheft.

Claim: Same as Contract-NaiveKeyTheft, except that the
ledger update ledger[P] := ledger[P]+$reward does
not take place immediately.

Revoke: On receive (“revoke”, Πrevoke) from some R:

Assert Πrevoke is valid, and state 6= ABORTED.

ledger[R] := ledger[R]+$smallreward.

If state= CLAIMED:

t := (time elapsed since successful Claim).
P := (successful claimer)
rewardP := f ($reward, t).
ledger[P] := ledger[P]+ rewardP .

Else, rewardP := 0

ledger[C] :=

ledger[C]+$reward−$smallreward
−rewardP

Set state := ABORTED.

Timer: If state = CLAIMED and at least ∆T time elapsed
since successful Claim:

ledger[P] := ledger[P]+$reward where P is suc-
cessful claimer;

Set state := ABORTED.

Else if current time T > Tend and state 6= ABORTED:

ledger[C] := ledger[C]+$reward.

Set state := ABORTED.

// P should not submit claims after time Tend−∆T .

Figure 12: Key compromise CSC that thwarts revoke-
and-claim attacks. Although supercially written in a
slightly different manner, this figure is essentially equiv-
alent to Figure 4 in the main body. We repeat it here and
write the contract with respect to the differences from
Figure 9 for the readers’ convenience.
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Prot-KeyTheft

Contractor C:

Create: Upon receiving input (“create”, $reward, pkV ,Tend,
∆T , C):

Send (“create”, $reward, pkV , Tend, ∆T ) to
G(Contract-KeyTheft).

Claim: Upon receiving a message (“claim”, ct) from
G(Contract-KeyTheft):

Decrypt and output m :=Dec(skC ,ct).

Perpetrator P:

Intent: Same as Prot-NaiveKeyTheft (Figure 10), but
send messages to G(Contract-KeyTheft) rather than
G(Contract-NaiveKeyTheft).

Claim: Same as Prot-NaiveKeyTheft, but send mes-
sages to G(Contract-KeyTheft) rather than
G(Contract-NaiveKeyTheft).

Revoker R:

Revoke: Upon receiving (“revoke”, Πrevoke) from
the environment E : forward the message to
G(Contract-KeyTheft).

Figure 13: User-side programs for incentive compatible
key theft.

E Formal Protocols for Public Document
Leakage

E.1 Formal Description

Ideal program for public document leakage. We for-
mally describe the ideal program for public document
leakage in Figure 14.

Contract. The contract program for public leakage is
formally described in Figure 15, which is a repeat of Fig-
ure 2 for the readers’ convenience.

Protocol. The protocols for public leakage are formally
described in Figure 16.

Theorem 3 (Public leakage) Assume that the encryp-
tion scheme (Enc,Dec) is perfectly correct and seman-
tically secure, the NIZK scheme is perfectly complete
and computationally zero-knowledge, then the proto-
col described in Figures 2 and 16 securely emulates
F(Ideal-PublicLeaks).

Proof: The formal proofs are supplied in Appendix E.2.

E.2 Proofs for Public Document Leakage

E.2.1 Ideal World Simulator

The wrapper part of S(simP) was described earlier , we
now describe the user-defined simulator simP.

Init. The simulator simP runs crs← NIZK.K(1λ ), and
(pk,sk)←KeyGenenc(1λ ). The simulator gives (crs,pk)
to the environment E , and remembers sk.

The simulator S(simP) will also simulate the random
oracle (RO) queries. For now, we simply assume that
a separate RO instance is employed for each protocol
instance – or we can use the techniques by Canetti et
al. [28] to have a global RO for all protocol instances.

Simulation for an honest seller C.

• Create: Environment E sends input (“create”, M,
C, Tend) to an honest leaker C: simP receives
(“create”, |M|, C) from the ideal functionality
F(Ideal-PublicLeaks) – and this message is routed
through S. simP now generates an msk using the hon-

est algorithm. For i ∈ [n], pick cti
$←{0,1}` where

` denotes the length of each document. Pick c0 :=
Enc(pk,0,r0) for some random r0.

Now, send (“create”, c0, Tend) to the internally sim-
ulated G(Contract-PublicLeaks). Upon receiving a
challenge set Ω from the ideal functionality, use the
same Ω for simulating G(Contract-PublicLeaks).
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Ideal-PublicLeaks

Init: Set state= INIT, and donations := {}.
Create: Upon receiving (“create”, M, Tend) from some

leaker C, where M is a document consisting of n
segments denoted M := {mi}i∈[n]:

Notify (“create”, |M|, C) to S.

Select a random subset Ω ⊂ [n] of size k,
and send Ω to the adversary S.

Set state := CREATED.

Confirm: Upon receiving (“confirm”) from leaker C:

Assert state= CREATED.

Send {mi}i∈Ω to the adversary S.

Set state := CONFIRMED.

Donate: Upon receiving (“donate”, $amt) from some pur-
chaser P:

Notify S of (“donate”, $amt, P)

Assert state= CONFIRMED

Assert ledger[P]≥ $amt.

Set ledger[P] := ledger[P]−$amt.

donations := donations∪{($amt,P)}.

Accept: Upon receiving (“accept”) from C:

Notify (“accept”, C) to the ideal adversary S.

Assert state= CONFIRMED.

ledger[P] := ledger[P]+ sum(donations)

Send M to the ideal adversary S.

Set state := ABORTED.

Timer: If state= CONFIRMED and T > Tend: ∀($amt,P)∈
donations: let ledger[P] := ledger[P]+$amt. Set
state := ABORTED.

Figure 14: Ideal program for public leaks.

Contract-PublicLeaks

Init: Set state := INIT, and donations := {}. Let crs :=
KeyGennizk(1λ ), pk := KeyGenenc(1λ ) denote
hardcoded public parameters generated through a
trusted setup.

Create: Upon receiving (“create”, c0, {cti}n
i=1, Tend) from

some leaker C:

Set state := CREATED.

Select a random subset Ω ⊂ [n] of size k, and
send (“challenge”, Ω) to C.

Confirm: Upon receiving (“confirm”, {(κi,πi)}i∈Ω) from C:

Assert state= CREATED.

Assert that ∀i ∈ S: πi is a valid NIZK proof (un-
der crs) for the following statement:

∃(msk,r0), s.t. (c0 = Enc(pk,msk,r0))
∧(κi = PRF(msk, i))

Set state := CONFIRMED.

Donate: Upon receiving (“donate”, $amt) from some pur-
chaser P:

Assert state= CONFIRMED.

Assert ledger[P]≥ $amt.

Set ledger[P] := ledger[P]−$amt.

donations := donations∪{($amt,P)}.

Accept: Upon receiving (“accept”, msk, r0) from C:

Assert state= CONFIRMED

Assert c0 = Enc(pk,msk,r0)

ledger[C] := ledger[C]+ sum(donations)

Send (“leak”,msk) to all parties.

Set state := ABORTED.

Timer: If state= CONFIRMED and T > Tend: ∀($amt,P)∈
donations: let ledger[P] := ledger[P]+$amt. Set
state := ABORTED.

Figure 15: A contract PublicLeaks that leaks a secret M
to the public in exchange for donations. This figure is a
repeat of Figure 2 for the readers’ convenience.
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Prot-PublicLeaks

Init: Let crs := KeyGennizk(1λ ) and pk :=
KeyGenenc(1λ ) denote hardcoded public pa-
rameters generated through a trusted setup.

As leaker C:

Create: Upon receiving (“create”,M := {mi}i∈[n],Tend,C)
from the environment E :

msk
$←{0,1}λ

For i ∈ [n], compute κi := PRF(msk, i). Then,
compute cti := H(κi)⊕mi.

Pick random r0
$←{0,1}λ and compute c0 :=

Enc(pk,msk,r0).

Send (“create”, c0, {cti}i∈[n], Tend). to
G(Contract-PublicLeaks).

Challenge: Upon receiving (“challenge”, Ω) from
G(Contract-PublicLeaks):

For i∈Ω: compute a NIZK proof πi for the state-
ment using witness (msk,r0):

∃(msk,r0), s.t. (c0 = Enc(pk,msk,r0))
∧(κi = PRF(msk, i))

Send (“confirm”, {κi,πi}i∈Ω). to
G(Contract-PublicLeaks).

Accept: Upon receiving (“accept”, C) from the en-
vironment: Send (“accept”, msk, r0). to
G(Contract-PublicLeaks).

As purchaser P:

Donate: Upon receiving (“donate”, $amt, P) from the
environment E : Send (“donate”, $amt). to
G(Contract-PublicLeaks).

Leak: Upon receiving (“leak”, msk) from
G(Contract-PublicLeaks):

Download {(i,cti)i∈[n]} from
G(Contract-PublicLeaks).
For i ∈ [n], output Dec(H(PRF(msk, i)),cti).

Figure 16: User-side programs for public leaks.

• Confirm: Upon receiving {mi}i∈Ω from the ideal func-
tionality: the simulator simP now computes3 κi :=
PRF(msk, i) for i ∈ Ω. The simulator programs the
random oracle such that H(κi) = mi⊕ cti. Now, the
simulator computes the NIZKs honestly, and send
{κi,πi}i∈Ω to the simulated G(Contract-PublicLeaks).

• Accept: Upon receiving (“accept”, P) from the ideal
functionality, upon receiving M from the ideal func-
tionality: send (“accept”, msk) to the simulated
G(Contract-PublicLeaks). Now, based on M, program
the random oracle such that H(PRF(msk, i))⊕cti =mi
for i ∈ [n].

Simulation for an honest purchaser P .

• Donate: Environment sends (“donate”, $amt, P)
to an honest donor, simulator simP receives (“do-
nate”, $amt, P) from the ideal functionality (routed
by the wrapper S), and forwards it to the simulated
G(Contract-PublicLeaks).

Simulation for a corrupted purchaser P .

• Donate: If the environment E sends (“donate”, $amt,
P) to simP on behalf of a corrupted purchaser P
(message routed through the wrapper S), simP passes
it onto the ideal functionality, and the simulated
G(Contract-PublicLeaks).

Simulation for a corrupted leaker C.

• Create: When the environment E sends (“create”, (ct0,
{(i,cti}i∈[n]), Tend, C) to simP, simP passes it to the in-
ternally simulated G(Contract-PublicLeaks). Further,
simP decrypts the msk from c0.

Now reconstruct M in the following manner: Compute
all κi’s from the msk. For every κi that was submitted
as an RO query, the simulator recovers the mi. Oth-
erwise if for some i, κi was an RO query earlier, the
simulator programs the RO randomly at κi, and com-
putes the mi accordingly – in this case mi would be
randomly distributed.

Now, send (“create”, M, Tend) on behalf of C to the
ideal functionality where M is the document set recon-
structed as above.

• Challenge: When the environment E sends (“con-
firm”, {κi,πi}i∈Ω, C) to simP (message routed through
the wrapper S), pass the message to the simulated
G(Contract-PublicLeaks). If the NIZK proofs all ver-
ify, then send “confirm” as C to the ideal functionality.
3 If the hash function has short output, we can

compute the encryption of mi as follows: mi ⊕
[H(κi,1,“enc”) ||H(κi,2,“enc”) . . . , ||H(κi,z,“enc”)] for suitably
large z. Here we simply write H(κi)⊕mi for convenience.
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• Accept: When the environment E sends (“accept”,
msk,r0, C) to simP (message routed through the
wrapper S), pass the message to the simulated
G(Contract-PublicLeaks). If Enc(pk,msk,r0) = c0,
then send “accept” as C to the ideal functionality.

Indistinguishability of real and ideal worlds. Given
the above description of the ideal-world simulation, it is
not hard to proceed and show the computational indis-
tinguishability of the real and the ideal worlds from the
perspective of the environment E .
Remark. Our overall proof structure for this variant is
the same as that for the optimized scheme, under the
ROM for H. For schemes under the ROM to be uni-
versally composable, each protocol instance needs to in-
stantiate a different random oracle, or the approach of
Canetti et al. [28] can be adopted.

F Supplemental Details for Document
Leakage

F.1 Background: Existing Darkleaks Pro-
tocol

In this appendix, we present an overview of the existing,
broken Darkleaks protocol, as we are unaware of any uni-
fied technical presentation elsewhere. (Specific details,
e.g., message formats, may be found in the Darkleaks
source code [3], and cryptographic primitives h1,h2,h2,
and (enc,dec) are specified below.)

The protocol steps are as follows:

• Create: The contractor C partitions the secret M =
m1 ‖ m2 ‖ . . . ‖ mn. For each segment mi in M =
{mi}n

i=1, C computes:

– A Bitcoin (ECDSA) private key ski = h1(mi)
and the corresponding public key pki.

– The Bitcoin address ai = h2(pki) associated
with pki.

– A symmetric key κi = h3(pki), computed as a
hash of public key pki.

– The ciphertext ei = encκi [mi].

C publishes: The parameter triple (n,k,Topen), ci-
phertexts E = {ei}n

i=1, and Bitcoin addresses A =
{ai}n

i=1.

• Challenge: At epoch (block height) Topen, the cur-
rent Bitcoin block hash Bt serves as a pseudoran-
dom seed for a challenge S∗ = {si}k

i=1.

• Response: In epoch Topen, C publishes the subset
of public keys PK∗ = {pks}s∈S∗ corresponding to
addresses A∗ = {as}s∈S∗ . (The sample of segments
M∗ = {ms}s∈S∗ can then be decrypted by the Dark-
leaks community.)

• Payment: To pay for M, buyers send Bitcoin to the
addresses A− A∗ corresponding to unopened seg-
ments.

• Disclosure: The leaker C claims the payments made
to addresses in A−A∗. As spending the Bitcoin in
address ai discloses pki., decryption of all unopened
segments M −M∗ is automatically made possible
for the Darkleaks community.

Here, h1 = SHA-256, h2 =
RIPEMD-160(SHA-256()), and h3 =
SHA-256(SHA-256()). The pair (enc,dec) in Darkleaks
corresponds to AES-256-ECB.

As a byproduct of its release of PK∗ in response to
challenge S∗, C proves (weakly) that undecrypted ci-
phertexts are well-formed, i.e., that ei = encκi [mi] for
κi = h3(pki). This cut-and-choose-type proof assures
buyers that when C claims its reward, M will be fully
disclosed.

F.2 Public leakage implementation on
Ethereum

The section illustrates an actual smart contract for public
leakage. This contract fixes two main drawbacks with the
existing Darkleaks protocol (Shortcomings 1 and 2 dis-
cussed in 4.1). The contract mainly enables better guar-
antees through deposits and timeout procedures, while
preventing selective withholding. Figure 17 illustrates
the contract code. The main goal of providing this code
is to illustrate how fast it could be to write such contracts.

The contract in Figure 17 mainly considers a leaker
who announces the ownership of the leaked material (e-
mails, photos, secret documents, .. etc), and reveals a
random subset of the encryption keys at some point to
convince users of the ownership. Interested users can
then deposit donations. In order for the leaker to get the
reward from the contract, all the rest of the keys must be
provided at the same time, before a deadline.

To ensure incentive compatability, the leaker is re-
quired by the contract in the beginning to deposit an
amount of money, that is only retrievable if complied
with the protocol. Also, for users to feel safe to de-
posit money, a timeout mechanism is used, such that if
the leaker does not provide a response in time, the users
will be able to withdraw the donations.
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F.3 Private Secret-Leakage Contracts
In Section 4, we consider a public leakage model in
which C collects donations, and when satisfied with total
amount donated, leaks a secret to the public. In a varia-
tion in this appendix, we can consider a private leakage
model in which C leaks a secret privately to a purchaser
P . A simple modification to the blackbox protocol sup-
ports this case. In particular, if C accepts P’s bid, it com-
putes the pair (ct,π) as follows:

• ct :=Enc(pkP ,msk,r), for random coins r and where
pkP denotes purchaser P’s (pseudonymous) public
key.

• π is a NIZK proof for the following statement:

∃(msk,r0,r) s.t. (c0 = Enc(pk,msk,r0))
∧(ct= Enc(pkP ,msk,r))

When C submits (ct,π) to the contract, the contract
verifies the NIZK proof π , and if it is correct, sends P’s
deposited bid to C. At this point, the purchaser P can
decrypt the master secret key msk and then the unopened
segments.

The above private leakage protocol can be proven se-
cure in a similar manner as our public leakage contract.

A practical version for Ethereum. An efficient instan-
tiation of this protocol is possible using a verifiable ran-
dom function (VRF). and verifiable encryption (VE). We
sketch the construction informally here (without proof).
We then describe a specific pair of primitive choices
(a VRF by Chaum and Pedersen [31] and VE by Ca-
menisch and Shoup [25]) that can be efficiently realized
in Ethereum.

Briefly, a VRF is a public-key primitive with private
/ public key pair (skvrf,pkvrf) and an associated pseudo-
random function F . It takes as input a value i and outputs
a pair (σ ,π), where σ = Fskvrf(i), and π is a NIZK proof
of correctness of σ . The NIZK π can be verified using
pkvrf.

A VE scheme is also a public-key primitive, with pri-
vate / public key pair (skve,pkve). It takes as input a mes-
sage m and outputs a ciphertext / proof pair (ct,π), where
π is a NIZK proof that ct = encpkve [m] for a message m
that satisfies some publicly defined property θ .

Our proposed construction, then, uses a VRF to gener-
ate (symmetric) encryption keys for segments of M such
that κi = Fskvr f (i). That is, msk= skvr f . The correspond-
ing NIZK proof π is used in the Confirm step of the
contract to verify that revealed symmetric keys are cor-
rect. A VE, then, is used to generate a ciphertext ct on
msk = skvr f under the public key pkP of the purchaser.
The pair (ct,π), is presented in the Accept step of the

contract. The contract can then verify the correctness of
ct.

A simple and practical VRF due to Chaum and Peder-
sen [31] is one that for a group G of order p with gen-
erator g (and with some reasonable restrictions on p),
msk = skvr f = x, for x ∈R Zp and pkvr f = gx. Then
Fskvrf(i) = H(i)x for a hash function H : {0,1}∗ → G,
while π is a Schnorr-signature-type NIZKP. (Security re-
lies on the DDH assumption on G and the ROM for H.)

A corresponding, highly efficient VE scheme of Ca-
menisch and Shoup [25] permits encryption of a discrete
log over a group G; that is, it supports verifiable encryp-
tion of a message x, where for a public value y, the prop-
erty θG(y) is x = dlog(y) over G. Thus, the scheme sup-
ports verifiable encryption of msk = skvr f = x, where π

is a NIZK proof that x is the private key corresponding
to pkvr f = gx. (Security relies on Paillier’s decision com-
posite residuosity assumption.)

Serpent, the scripting language for Ethereum, offers
(beta) support for modular arithmetic. Thus, the Chaum-
Pedersen VRF and Camensich-Shoup VE can be effi-
ciently implemented in Ethereum, showing that private
leakage contracts are practical in Ethereum.

G Calling-Card Crimes

In this appendix, we explain how to construct CSCs for
crimes beyond the website defacement achieved by Sit-
eDeface.

In SiteDeface, the calling card cc is high-entropy—
drawn uniformly (in the ROM) from a space of size
|CC| = 2256. For other crimes, the space CC can
be much smaller. Suppose, for example, that cc for
an assassination of a public figure X is a day and
city. Then an adversary can make a sequence of on-
line guesses at cc with corresponding commitments
vcc(1),vcc(2), . . . ,vcc(n) such that with high probability
for relatively small n (on the order of thousands), some
vcc(i) will contain the correct value cc. (Note that com-
mit conceals cc, but does not prevent guessing attacks
against it.) These guesses, moreover, can potentially be
submitted in advance of the calling call cc of a true perpe-
trator P , resulting in theft of the reward and undermining
commission-fairness.

There are two possible, complementary ways to ad-
dress this problem. One is to enlarge the space CC by
tailoring attacks to include hard-to-guess details. For ex-
ample, the contract might support commitment to a one-
time, esoteric pseudonym Y used to claim the attack with
the media, e.g., “Police report a credible claim by a group
calling itself the [Y =] ‘Star-Spangled Guerilla Girls’.”
Or a murder might involve a rare poison (Y = Polonium-
210 + strychnine).
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Another option is to require a commitment vcc to carry
a deposit $deposit for the contract that is forfeit to C
if there is no successful claim against vcc after a pre-
determined time. Treating cc as a random variable, let
p = 2−H∞[cc]. Provided that $deposit> p×$reward, ad-
versaries are economically disincentivized from brute-
force guessing of calling cards. Commission-fairness
then relies on economic rationality.

Finally, we note that it is also possible to implement
anti-CSCs using calling cards. For example, an anony-
mous reward could be made available for returning a
stolen painting, informing on a criminal, etc.

H Formal Definition for Calling-Card
Criminal Contracts

We formally describe the ideal program for Calling-Card
Criminal Contracts in Figure 18. We make the simpli-
fying assumption that the trusted data feed DataFeed
emits pre-processed calling-card data that are directly
checked by the program. It should also be noted that
the Params argument denotes a general list of attributes
that are adapted to the context. For example, in the con-
text of the SiteDeface CSC discussed earlier (Figure 5),
Params will include the service public key, the webpage
URL, and the desired statement.

Ideal-CallingCard

Init: Set state := INIT.

Create: Upon receiving (“create”, $reward, Params,
DataFeed,Tend) from some contractor C:

Notify (“create”,$reward,Params,DataFeed,
Tend,C) to S.

Assert ledger[C]≥ $reward.

ledger[C] := ledger[C]−$reward

Set state := CREATED.

Commit: Upon receiving (“commit”, cc) from some perpetra-
tor P:

Assert state= CREATED.

Notify (“commit”,P) to S.

Assert cc was not sent before by any other perpe-
trator.

Assert this is the first commit received from P .

Store (P , cc).

Reward: Upon receiving (“reward”, Params′, cc′) from
DataFeed:

Assert state 6= ABORTED.

Notify (“reward”,Params′,cc,DataFeed) to S.

Assert Params′ = Params

Find the Perpetrator P who sent a (“commit”, cc)
such that cc = cc′.

If P 6= nil

Set ledger[P] := ledger[P]+$reward

else

Set ledger[C] := ledger[C]+$reward

Set state := ABORTED.

Timer: If state= CREATED and current time T > Tend:

Set ledger[C] := ledger[C]+$reward

Set state := ABORTED.

Figure 18: Ideal program for a generalized calling card
CSC.
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data leaker_address
data num_chunks
data revealed_set_size
data T_end
data deposit
data reveal_block_number
data selected_sample []
data key_hashes []
data donations []
data sum_donations
data num_donors
data finalized

def init():
self.leaker_address = msg.sender

# A leaker commits to the hashes of the
encryption keys , and sets the
announcement details

def commit( key_hashes:arr , revealed_set_size
, reveal_block_number , T_end ,
distribution_address):

# Assuming a deposit of a high value from
the leaker to discourage aborting

if( msg.value >= 1000000 and msg.sender ==
self.leaker_address and self.deposit == 0
and revealed_set_size < len(key_hashes))

:
self.deposit = msg.value
self.num_chunks = len(key_hashes)
self.revealed_set_size =
revealed_set_size
self.T_end = T_end
self.reveal_block_number =
reveal_block_number
i = 0
while(i < len(key_hashes)):

self.key_hashes[i] = key_hashes[i]
i = i + 1

return (0)
else:

return (-1)

def revealSample(sampled_keys:arr):
# The contract computes and stores the

random indices based on the previous
block hash. The PRG is implemented using
SHA3 here for simplicity.

# The contract does not have to check for
the correctness of the sampled keys. This
can be done offline by the users.

if( msg.sender == self.leaker_address and
len(sampled_keys) == self.
revealed_set_size and block.number ==
self.reveal_block_number ):
seed = block.prevhash
c = 0
while(c < self.revealed_set_size):

if(seed < 0):
seed = 0 - seed

idx = seed % self.num_chunks
# make sure idx was not selected before
while(self.selected_sample[idx] == 1):

seed = sha3(seed)
if(seed < 0):

seed = 0 - seed
idx = seed % self.num_chunks

self.selected_sample[idx] = 1
seed = sha3(seed)
c = c + 1

return (0)
else:

return (-1)

def donate ():
# Users verify the shown sample offline ,

and interested users donate money.
prev_donation = self.donations[msg.sender]
if( msg.value > 0 and block.timestamp <=

self.T_end and prev_donation == 0):
self.donations[msg.sender] = msg.value
self.num_donors = self.num_donors + 1
self.sum_donations = self.sum_donations +
msg.value

return (0)
else:

return (-1)

def revealRemaining(remaining_keys:arr):
# For the leaker to get the reward , the

remaining keys have to be all revealed at
once.

# The contract will check for the
consistency of the hashes and the
remaining keys this time.

if( msg.sender == self.leaker_address and
block.timestamp <= self.T_end and len(
remaining_keys)==self.num_chunks - self.
revealed_set_size and self.finalized ==
0):
idx1 = 0
idx2 = 0
valid = 1
while(valid == 1 and idx1 < len(
remaining_keys)):
while(self.selected_sample[idx2] == 1):

idx2 = idx2+1
key = remaining_keys[idx1]
key_hash = self.key_hashes[idx2]
if(not(sha3(key) == key_hash)):

valid = 0
idx1 = idx1+1
idx2 = idx2+1

if(valid == 1):
send(self.leaker_address , self.

sum_donations + self.deposit)
self.finalized = 1
return (0)

else:
return (-1)

else:
return (-1)

def withdraw ():
## This is a useful module that enables

users to get their donations back if the
leaker aborted

v = self.donations[msg.sender]
if(block.timestamp > self.T_end and self.

finalized == 0 and v > 0):
send(msg.sender , v + self.deposit/self.
num_donors)
return (0)

else:
return (-1)

Figure 17: Public leakage contract implemented on top of Ethereum.
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