Federated Consensus

Robbert van Renesse
joint work with Isaac Sheff and Andrew Myers

Cornell University

What is Consensus?

* A way for multiple participants to agree on
— the next update to perform in a replicated service
— aleader
— whether to abort or commit a transaction
— a recovery action after a failure

— the next block in a block chain wa\—#

* Dfinity/Pebble, HyperlLedger, Ripple, Stellar
 Alternative to Proof of Work / Proof of *

* Surprisingly hard with participant and network failures
— whether accidental or malicious

 Even harder in the face of asynchrony
— complete lack of bounds on latency

|
(end)

Consensus Formalized

* Agreement:

— if multiple correct participants decide, they must
decide the same value

e Validity:

— if all correct participants propose the same value,
then that value must be decided

e other non-triviality conditions are possible

* Termination:

— a correct participant must eventually decide

Failure Type Hierarchy

Byzantine

Crash (Availability)

Fail-Stop

(reliably detectable)

Integrity Failure = Byzantine — Availability Failure

Generic Asynchronous Consensus
Protocol (Simplified)

* The participants run rounds of communication
— aka ballots

* Each participant maintains
— a round number r, initially O
— an estimate e, initially the proposal of the participant
* Communication channels between participants
are point-to-point and private
— no public key crypto required

Based on Yee Jiun Song and Robbert van Renesse. Bosco: One-Step
Byzantine Asynchronous Consensus. 22nd International Symposium on
Distributed Computing (DISC 08). September 2008

Generic Asynchronous Consensus

(for crash or Byzantine failures, or combination)

Broadcast <r, e > “vote” to N participants (including to self)
Wait for T1 £ N votes

If T2 <T1 votes are unanimous, decide that proposal

If T3 < T2 votes are unanimous, change e to that proposal
r=r+1

Repeat (go to Step 1, starting next round)

N N N‘e N XX
20 20 20 280 20

vV vV VvV V¥V

Thresholds

o e e

Crash 3f+1 2f+1 2f+1
Byzantine 5f+1 4f+1 4f+1 2f+1
Notes:

— N does not meet lower bounds
* meeting lower bounds requires two voting phases per round

—T1=N-f

— T2 + T2 > N (quorums intersect)

— T3+ T3 >T1 (T3 is a majority of received votes)
— Everybody agrees a priorion N, T1, T2, and T3

Trust in Practice?

* Every principal (participant) has potentially
different trust in other principals

e Can be further refined with respect to

* Trust in Integrity
* Trust in Availability
* (Trust in Confidentiality)

* Not homogeneous, but heterogeneous

Heterogeneous Trust

' ’) y

O = cdci @ « H =

A 4

vy Vo

from Stellar YouTube presentation
(David Maziéres)

from “Distributed Protocols and Heterogeneous Trust” by Sheff et al. 2014
distinguishes integrity and availability trust assumptions

Quorum Slices

* Each principal trusts one or more groups of
principals. Stellar calls each such group a slice.

e E.g., if some principal trust 3outof{a, b,c, d},
then there are four slices

* We would express this as follows

(@aAbAc)V(aAbAd)V(aAcAd)V(bAcAd)

Revisit Consensus Thresholds

* Fach threshold (T1, T2, T3) is a set of slices

* Need to determine for each participant:
— T1: when to stop waiting for votes

* j.e., it has votes from all participants in a T1 slice

— T2: when to decide
* i.e, it has unanimous votes from all participants in a T2 slice

— T3: when to change estimate

* j.e., it has unanimous votes from all participants in a T3 slice

Not all honest participants are the same

An honest participant may accidentally choose

— T1 slices too large: get stuck waiting for votes
* similar to crash failure

— T2 or T3 slices too large: never decide or never change
estimates

— T2 slices too small: decide too quickly and possibly
inconsistently with other honest participants

e similar to Byzantine failure

— T3 slices too small: change estimates too quickly and
possibly confuse other honest participants /

i

Revisit Consensus Properties

* Classes of honest participants:
— Chumps: trust assumptions violated
— Gurus: trust assumptions always hold

* Stellar concepts and terminology:
— intact: non-crashing guru
— befouled: not intact

* Heterogeneous Consensus Properties:
— if two gurus decide, they decide the same value

— gurus never get stuck
* can always potentially decide and terminate

— hard to provide properties to chumps
e what you trust can hurt you!

How to select thresholds/slices?

Very large space of potential solutions to explore

* QOur approach (2014):

— use an SMT solver to determine T1, T2, and T3
— requires knowing participants and their trust assumptions
— does not scale well

e Stellar’s approach (2015):

— given slices, construct quorums:
* a quorum is a set of principals such that each of its members has a slice
that is contained within that quorum
— then make it the responsibility of each participant to choose
slices such that any two quorums intersect after removing
Byzantine participants from the quorums

How to select slices in Stellar

The Stellar Consensus Protocol 9

systems thanks to the duplicity of the ill-behaved nodes. In short, FBAS (V,Q) can
survive Byzantine failure by a set of nodes B C V iff (V, Q) enjoys quorum intersection
after deleting the nodes in B from V and from all slices in Q. More formally:

Definition (delete). If (V,Q) is an FBAS and B C V is a set of nodes, then to delete B
from (V, Q), written (V,Q)2, means to compute the modified FBAS (V \ B, Q”?) where
Q°(w)={g\Blg€Q®)}.

It is the responsibility of each node v to ensure Q(v) does not violate quorum inter-
section. One way to do so is to pick conservative slices that lead to large quorums. Of

course, a malicious v may intentionally pick Q(v) to violate quorum intersection. But

— Decentralized control. Anyone is able to participate and no central authority
dictates whose approval is required for consensus.

from: David Mazieres. The Stellar Consensus Protocol:
A Federated Model for Internet-level Consensus (April 2015)

Potential Problems with Stellar’s Slice Selection

* If you know the Byzantine participants or a superset thereof,
there is a trivial solution

* To ensure quorums intersect, you need to know the slices of the
members in the quorums
— Not so open...

* To know if a quorum is “large,” you need to know how many
participants there are in total

* Large quorums are good for safety but bad for liveness

— It had better be that most participants in slices are active, or there will be
no quorum consisting of intact participants and hence no decision

Tiered Transitive Trust

e ~ o
O < ct B ¢ HP =
Vs Ve vy Ve
from Stellar YouTube presentation
(David Mazieres)
vy V1o

Improves chances of any two quorums intersecting without
having to know the entire membership

Helps with so-called Sybil attacks (a single attacker
pretending to be multiple principals)

Vulnerable to failures in Tier 1 participants
* @Guess: 3/4inTier 1 (sink component) not chosen arbitrarily (3f+1)
* why not just delegate/centralize? (add auditing)

Conclusion

* |tis not yet clear (to me) that successful open
Byzantine consensus protocols can be built on trust

between principals or federations of principals

— but see “Byzantine Consensus with Unknown Participants.” Edward A.
Alchieri et al. In 12th International Conference on Principles of Distributed
Systems. 2008.

* Did not discuss another design option for federation

— replicate the participants of a consensus protocol

— leads to a hierarchy of replicated state machines

* see “STEWARD: Scaling Byzantine Fault-Tolerant Replication to Wide
Area Networks.” Yair Amir et al. IEEE Transactions on Dependable and
Secure Computing 7(1). 2010.

backup slides

What is a Crash Failure? *

e aka Availability Failure

* A participant that stops indefinitely
— But it follows specification until then

* Crash failures cannot be reliably detected in an
asynchronous environment

— If you ping a participant and don’t receive a response,
you don’t know if the participant is faulty or the
system is simply slow

What is Asynchrony?

* No bounds on timing

— no bounds on message latency i
* but between correct processes messages are eventually dellvered

— no bounds on how fast clocks run
* but they do run monotonically increasing

— no bounds on how skewed the clocks are
* clocks on different machines show arbitrarily different times

— no bounds on processing time
* Not to be confused with “non-blocking”

— “asynchronous RPC” and “asynchronous system calls” are
misnomers

Lower Bound with Byzantine Failures

In an asynchronous environment, you need at least
3f + 1 participants to tolerate f Byzantine failures

indistinguishability
argument: 3f is not enough

(f=3)

AR
&5

